

ARIS PROCESS MINING

DATA INGESTION API

OCTOBER 2024

VERSION 10.0 - SERVICE RELEASE 27 AND HIGHER

This document applies to ARIS Process Mining Version 10.0 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in
subsequent release notes or new editions.

Copyright © 2020-2024 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or
registered trademarks of Software GmbH and/or its subsidiaries and/or its affiliates and/or
their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its
subsidiaries is located at https://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices,
license terms, additional rights or restrictions, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products". For certain specific third-party license
restrictions, please refer to section E of the Legal Notices available under "License Terms and
Conditions for Use of Software GmbH Products / Copyright and Trademark Notices of
Software GmbH Products". These documents are part of the product documentation, located
at https://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically
provided for in your License Agreement with Software GmbH.

DATA INGESTION API

I

Contents

Contents ... I

1 Ingest data using a public API ... 1
1.1 Notes .. 2
1.2 Preparations in ARIS Process Mining ... 2

1.2.1 Create a system integration for the data ingestion API .. 2
1.2.2 Create a connection in the data set ... 3

1.3 Use the data ingestion API ... 5
1.3.1 Authenticate your API client .. 5

1.3.1.1 Authentication via URL parameters is deprecated 8
1.3.1.2 Note the technical key of a data set .. 8

1.3.2 Retrieve source table definitions .. 9
1.3.3 Create or replace source tables .. 9
1.3.4 Check if the data set is ready for data upload ... 10
1.3.5 Create a data upload cycle .. 11
1.3.6 Upload data .. 12
1.3.7 Commit data upload cycle .. 12
1.3.8 Retrieve cycle state ... 13
1.3.9 Check if the data set is ready for data load .. 13
1.3.10 Start the data load .. 13
1.3.11 Retrieve cycle state ... 14
1.3.12 Drop source table ... 14
1.3.13 Retrieve ingestion cycles .. 14
1.3.14 Cancel ingestion cycle .. 14

1.4 API Methods ... 15
1.4.1 Path Section: Data Set .. 15
1.4.2 Path Section: Ingestion cycle .. 15
1.4.3 Retrieve API version ... 15
1.4.4 Retrieve source table definitions .. 16
1.4.5 Create or replace source tables .. 16
1.4.6 Update a source table definition .. 17
1.4.7 Check if data set is ready for ingestion ... 18
1.4.8 Create a new ingestion cycle ... 18
1.4.9 Cancel ingestion cycle .. 19
1.4.10 Upload data .. 19
1.4.11 Drop source table ... 20
1.4.12 Commit data upload cycle .. 20
1.4.13 Retrieve ingestion cycles .. 20
1.4.14 Return ingestion cycle state .. 20

1.5 Data transfer objects (DTOs) .. 21
1.5.1 SourceTableDefinition ... 21
1.5.2 DataIngestionReadyState .. 23
1.5.3 DataIngestionCycle .. 24
1.5.4 DataIngestionCycleState .. 27
1.5.5 Authentication response .. 28

DATA INGESTION API

II

1.6 Valuable information .. 28
1.6.1 Persistence mode ... 29
1.6.2 Limits ... 30

1.7 webMethods.io connector for ARIS Process Mining ... 31

2 Support and legal information .. 33
2.1 Documentation scope .. 33
2.2 Data protection ... 34
2.3 Support ... 34

DATA INGESTION API

1

1 Ingest data using a public API

ARIS Process Mining supports a public data ingestion API. You create and send HTTP requests

to use the API. The API allows you to transfer data from any data source to ARIS Process

Mining. The data transferred to ARIS Process Mining is in a logical tabular structure and must

conform to JSON format.

You can use an appropriate API client to create HTTP requests and you need the appropriate

API programming skills.

The Data transfer objects (DTOs) (page 21) chapter lists the DTOs that you can use for

transferring data.

The API Methods (page 15) chapter lists the endpoints that you can use for your HTTP

requests.

PREPARATIONS IN ARIS PROCESS MINING

To be able to transfer data to ARIS Process Mining using an API, you must perform the

following steps:

 Create a system integration for the data ingestion API (page 2).

 Create a data set to store the transferred data.

 Create a connection for the data ingestion API. (page 3)

USE THE DATA INGESTION API TO TRANSFER DATA

The following steps are a best practice for transferring data using an API.

 Authenticate your API client (page 5)

 Retrieve source table definitions (page 9)

 Create or replace source tables (page 9)

 Check if the data set is ready for data upload (page 10)

 Create a data upload cycle (page 11)

 Upload data (page 12)

 Commit data upload cycle (page 12)

 Retrieve cycle state (page 13)

 Check if the data set is ready for data load (page 13)

 Start the data load (page 13)

 Retrieve cycle state (page 14)

If required, you can also perform the following steps.

 Drop source table (page 14)

 Retrieve ingestion cycles (page 14)

DATA INGESTION API

2

 Cancel ingestion cycle (page 14)

1.1 Notes

Note that new JSON fields and enumeration values may be added to Ingestion API inputs and

outputs by Software GmbH as part of minor revisions to the API.

1.2 Preparations in ARIS Process Mining

1.2.1 Create a system integration for the data ingestion API

To use the data ingestion API (page 1), you must create a corresponding system integration.

ARIS Process Mining supports the OAuth2 Flows with Client credentials and Authorization

code grant types as authentication methods.

The authentication methods with client credentials is outside of a context of a user and is

recommended for machine-to-machine communication.

Prerequisite

You have installed the ARIS Process Mining Enterprise license.

Procedure

1. Click the Navigation menu icon > Administration in the program header.

2. Click System integration in the Administration panel.

3. Click Add system integration > Data ingestion (API). The corresponding dialog opens.

4. Enter a name, for example, Data ingestion, and an optional description.

5. Select an authentication method in the Grant type (OAuth) drop-down menu.

Client credentials as authentication method is recommended. It is intended for

machine-to-machine communication and is outside of the context of an actual log-in

user.

If you select the Authorization code grant type, specify the Authorization callback

URL that is used for authentication.

https://<region.ariscloud>/umc/rest/oauth/callback?tenant=<project_room>&provider=

umc

Replace hostname <region.ariscloud> with the hostname of the ARIS Process Mining

installation and the <project_room> with the ARIS Process Mining project room you want

to login to.

DATA INGESTION API

3

You can read the hostname of the URL (for example, processmining.ariscloud.com) in the

browser address bar if you are logged in.

Examples

Authorization callback URL for the ARIS cloud

https://processmining.ariscloud.com/umc/rest/oauth/callback?tenant=myprojectroom&

provider=umc

Authorization callback URL for the ARIS Enterprise cloud

https://<my_company_name>.ariscloud.com/umc/rest/oauth/callback?tenant=<project

_room>&provider=umc

6. Click Add. The Data ingestion access data dialog opens. The dialog provides the client

ID, secret key, and project room name.

If you have selected the Authorization code grant type the well-known URL is

additionally shown.

7. You can save the provided authentication data, for example, using a text editor.

Click Copy to clipboard and save the data.

8. Click Done.

The system integration is created and listed with the name you specified.

Note that the system integration of the data ingestion API remains in the Pending state by

default. However, you can use the system integration properly.

Tip

The access data (except for the endpoints) is saved in the system integration you created.

You can display the source system access data to access the client credentials key.

1.2.2 Create a connection in the data set

Before you can transfer data to ARIS Process Mining using the data ingestion API, you must

create a corresponding connection for the data set where the transferred data is stored. You

create a connection to the API client using the system integration you created (page 2).

Procedure

1. Click the Navigation menu icon in the program header.

2. Select Data collection. The Data collection opens and shows the Data sets page.

a. If you have already opened a data set, the recently opened data set is opened. Click

Back in the Data set panel to open the Data set page.

b. Click the data set on the Data sets page. The selected data set opens.

DATA INGESTION API

4

3. Open the Connections component.

4. Click Add connection. If you add a connection to a source system for the first time and

you have not assigned a 'Living Process' license to the data set yet, the Assign ‘Living

Process’ license dialog opens.

5. Select a license in the drop-down menu. You need the ‘Living Process’ license to extract

and analyze processes. The number of processes you can extract depends on the

selected license.

6. Click Assign. The Add connection dialog opens.

7. Configure the connection.

a. Enter a unique name for the connection to the source system, for example, Data

ingestion.

b. Select the system integration created for the data ingestion API.

c. Click Add.

You have created a connection for the API. The created connection is displayed on the

Connections page with the settings you specified.

DATA INGESTION API

5

1.3 Use the data ingestion API

The following steps are a best practice for transferring data using the data ingestion API.

The operations described below are available as predefined operations when using the

webMethods.io connector for ARIS Process Mining (page 31).

1.3.1 Authenticate your API client

You must perform an HTTP authentication request to authenticate your client against ARIS

Process Mining. Depending on the specified authentication method (page 2), you can use

client credentials or an authorization code.

You can find the required data in the system integration created for the data ingestion API

(page 2).

AUTHENTICATION AGAINST ARIS CLOUD USING CLIENT CREDENTIALS

Note that we firmly recommend the authentication using client credentials.

If you login to your project room using the URL mc.ariscloud.com, you are using the ARIS

cloud.

Send an HTTP Post request to the ARIS cloud endpoint and path /api/applications/login (for

example, https://mc.ariscloud.com/api/applications/login) with the following properties:

 Content type: application/x-www-form-urlencoded

 Request body with the values from the corresponding system integration (page 2):

clientId: client ID

clientSecret: client secret

tenant: project room name

The response is a JSON object that consists of the tenant, a URL, and an access token.

{
"tenant": "<project_room>",
"token": "…",
"url": "https://some_url"
}

Note

Use the value for the URL as the hostname for all subsequent calls to the REST endpoints.

DATA INGESTION API

6

Ensure that the generated bearer token is sent with the appropriate header for every

subsequent request. To do this, add this HTTP-request header to each request as follows:

Authorization: Bearer <token from response>

Please note the blank space after the term "Bearer".

AUTHENTICATION AGAINST ARIS ENTERPRISE CLOUD WITH ARIS USER
MANAGEMENT USING CLIENT CREDENTIALS

Note that we firmly recommend the authentication using client credentials.

Send an HTTP Post request to ARIS User Management using the path

/umc/api/oauth/apptoken (for example,

https://my_company_name.ariscloud.com/umc/api/oauth/apptoken) with the following

properties:

 Content type: application/x-www-form-urlencoded

 Request body with the values from the corresponding system integration (page 2):

client_id: client ID

client_secret: client secret

tenant: project room name

grant_type: client_credentials

The response is a JSON object that consists of an application token:

{
"applicationToken": "…"
}

Ensure that the generated bearer token is sent with the appropriate header for every

subsequent request. To do this, add this HTTP-request header to each request as follows:

Authorization: Bearer <token from response>

Please note the blank space after the term "Bearer".

AUTHENTICATION USING AUTHORIZATION CODE

Note that your client application must support OAuth 2.0 with Authorization code grant

type.

Configure the client application to use:

 Callback URL

The callback URL to which you will be redirected to authenticate against your project

room in ARIS Process Mining:

https://<region.ariscloud>/umc/rest/oauth/callback?tenant=<project_room>&provider=

umc

DATA INGESTION API

7

You can read the hostname of the URL (for example, processmining.ariscloud.com) in the

browser address bar if you are logged in.

Examples

If your project room is in the ARIS cloud, the callback URL could be as follows.

https://processmining.ariscloud.com/umc/rest/oauth/callback?tenant=<project_room>

&provider=umc

If your project room is in the ARIS Enterprise cloud, the URL could be as follows.

https://<my_company_name>.ariscloud.com/umc/rest/oauth/callback?tenant=<project

_room>&provider=umc

 Client ID and client secret

You noted them when you created the system integration in ARIS Process Mining, or you

can retrieve them from the list in the System Integration module in ARIS Process Mining

Administration when you view the system access data for that system integration.

Client ID and secret must be sent in the body, not as a Basic OAuth header.

 Authorization, token, and refresh endpoints can be retrieved by calling the

corresponding well-known URL in your browser. You can retrieve the well-known URL

from the list in the System Integration module in the ARIS Process Mining

Administration when you view the system access data for that system integration. The

URL will return a JSON object with authorization_endpoint, token_endpoint,

refresh_endpoint, and userinfo_endpoint.

Example

{
"authorization_endpoint":
"https://<hostname>/umc/oauthLogin?grant_type=authorization_code&tena
nt=<project_room>",
"token_endpoint":
"https://<hostname>/umc/api/v1/oauth/accesstoken?grant_type=authoriza
tion_code&tenant=<project_room>",
"userinfo_endpoint":
"https://<hostname>/umc/api/v1/oauth/userinfo?tenant=<project_room>",
"refresh_endpoint":
"https://<hostname>/umc/api/v1/oauth/refreshtoken?tenant=<project_roo
m>"}
}

After the client application sends an authentication request using these properties, the server

responds with a JSON object that consists of the tenant, a URL, and an access token.

{
"tenant": "<project_room>",
"token": "…",
"url": "https://some_url"
}

Note

DATA INGESTION API

8

Use the value for the URL as the hostname for all subsequent calls to the REST endpoints.

Ensure that the generated bearer token is sent with the appropriate header for every

subsequent request. To do this, add this HTTP-request header to each request as follows:

Authorization: Bearer <token from response>

Please note the blank space after the term "Bearer".

Additionally, for the authentication type Authorization Code a CSRF token must be sent with

each request.

You can acquire a CSRF token after a successful authentication by sending an HTTP POST

request to ARIS User Management at the path /umc/api/v2/tokens/csrftoken.

The result is a string of alphanumeric characters based on your current user session, for

example, oehltw0drUujSdWMD5TJEsXSLklwk1xKYh1LHaZ16g7. You must send this token with

the csrftoken header for each subsequent request.

1.3.1.1 Authentication via URL parameters is deprecated

Please note that from Service Release 28 (SR 28), the passing of authentication credentials

via URL query parameters is no longer supported. The credentials must be passed in the

request body. (page 5)

1.3.1.2 Note the technical key of a data set

All subsequent sections present different requests that are performed in the context of a

specific data set. For almost all requests, you must use the technical key of the data set.

(page 15)

A request contains the technical key as follows:

/dataSets/<data Set>

The <dataSet> parameter refers to the technical key of the data set and uses that value at

runtime. You can take the value from the URL in the address bar of the browser when opening

the corresponding data set.

The URL has the following format:

https://<hostname>/#<project_room>/dataCollection/y.dataset.<key>

The <key> parameter is based on the selected display name of the data set and should be

readable. Use this key in all your API requests to this specific data set.

Example

https://ariscloud.com/#myprojectroom/dataCollection/y.dataset.mydataset

DATA INGESTION API

9

1.3.2 Retrieve source table definitions

To retrieve source table definitions, perform the following HTTP request.

GET "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/sourceTableDefinitions[?fullyQualifiedNames=default.table_a[,default.table_b]]"

If no fullyQualifiedNames are specified, the structure of all available source tables is returned.

1.3.3 Create or replace source tables

To create or replace source tables, perform the following HTTP requests.

CREATE SOURCE TABLES

POST "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/sourceTables"

You must send a request body to the server in the following form (here with sample data):

[
 {
 "name": "table_a",
 "namespace": "default",
 "columns": [
 {
 "dataType": "STRING",
 "name": "column_a1"
 },
 {
 "dataType": "LONG",
 "name": "column_a2"
 },
 {
 "dataType": "DOUBLE",
 "name": "column_a3"
 },
 {
 "dataType": "FORMATTED_TIMESTAMP",
 "name": "column_a4",
 "format": "yyyy-MM-dd HH:mm:ss.SSS"
 }
]
 },
 {
 "name": "table_b",
 "namespace": "default",
 "persistenceMode": "OVERWRITE",
 "columns": [
 ...
]
 }
]

DATA INGESTION API

10

REPLACE SOURCE TABLES

POST "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/sourceTables?forceReplace=true"

You must send a request body to the server in the following form (here with sample data):

[
 {
 "fullyQualifiedName": "default.table_a",
 "columns": [
 {
 "dataType": "STRING",
 "name": "column_a1"
 },
 {
 "dataType": "LONG",
 "name": "column_a2"
 },
 {
 "dataType": "DOUBLE",
 "name": "column_a3"
 },
 {
 "dataType": "FORMATTED_TIMESTAMP",
 "name": "column_a4",
 "format": "yyyy-MM-dd HH:mm:ss.SSS"
 }
]
 },
 {
 "fullyQualifiedName": "default.table_b",
 "persistenceMode": "OVERWRITE"
 }
]

If no persistence mode (page 29) (persistenceMode) is set, the table is created or replaced

with persistenceMode = OVERWRITE.

If you are using the WebMethods connector for ARIS Process Mining, the forceReplace

parameter is implicitly set.

1.3.4 Check if the data set is ready for data upload

The data set must be ready to upload the data. To check the state of the data set, perform the

following HTTP request.

POST "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/readyForIngestion"

You must send a request body to the server in the following form (here with sample data):

DATA INGESTION API

11

{
 "dataUploadTargets": [
 {
 "fullyQualifiedName": "default.table_a"
 },
 {
 "fullyQualifiedName": "default.table_b"
 }
]
}

If the data set is ready, you receive a positive response. Otherwise, the response is negative

and contains the corresponding reason.

Example
{
 "ready": false,
 "cause": {
 "code": "INR1001",
 "message": "The data set is currently being processed"
 }
}

1.3.5 Create a data upload cycle

If the data set is ready, you can create a data ingestion cycle for the data upload with the

following HTTP request.

POST "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/ingestionCycles"

You must send a request body to the server in the following form (here with sample data):

{
 "dataUploadTargets": [
 {
 "fullyQualifiedName": "default.table_a"
 },
 {
 "fullyQualifiedName": "default.table_b"
 }
]
}

The response for the call above returns the fully-formed data ingestion cycle, containing a

technical key, the referenced data upload targets (tables), and some state information. It's

initial state is ACCEPTING_DATA. All tables referenced by the cycle are locked for everything

but the upcoming data upload.

{
 "key": "data_set_1_55",
 "dataUploadTargets": [...],
 "dataLoadTriggered": false,

DATA INGESTION API

12

 "state": {
 "value": "ACCEPTING_DATA"
 }
}

Note down the cycle's technical key and use it for all subsequent requests performed in the

context of this cycle, for example, when committing the data upload cycle.

A request contains the technical key as follows:

/ingestionCycles/<ingestion cycle>

1.3.6 Upload data

To upload the data of a source table to the data set, perform the following HTTP request.

POST "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/sourceTables/<source table>/data"

<source table>: fully qualified name (default.table_a)

You must send a request body to the server in the following form (here with sample data):

[
 ["This is a description", 1255, 1385.5, "2021-07-15 18:03:25.889"],
 ["A second example text", 510, -23.58, "2021-07-10 10:59:05.421"],
 ["Example text", 1626347163123, 3.1415, "2021-07-01 08:00:01.002"]
]

Larger amounts of data can be uploaded by means of multiple requests. With each request,

the data is stored in temporary form on the server.

1.3.7 Commit data upload cycle

Indicates ARIS Process Mining that all data has been uploaded and can be loaded into the

source tables.

PUT "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/ingestionCycles/<ingestion cycle>/dataComplete"

The ingestion cycle state changes to INGESTING_DATA. The uploaded temporary data is now

persisted in the source database.

The state of the specified cycle will be set to "COMPLETED_SUCCESSFULLY" when the

upload has finished without errors in ARIS Process Mining.

DATA INGESTION API

13

1.3.8 Retrieve cycle state

To read the current cycle state, perform the following HTTP request.

GET "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/ingestionCycles/<ingestion cycle>/state"

If the data ingestion failed, you receive a response with the corresponding reason:

{
 "value": "FAILED",
 "cause": {
 "code": "IER1000",
 "message": "An unexpected error occurred"
 }
}

Otherwise, the ingestion status can be INGESTING_DATA if the cycle is still running,

COMPLETED_SUCCESSFULLY if it went through without any problems, or CANCELED if it

was aborted (for example, using the API).

1.3.9 Check if the data set is ready for data load

The data set must be ready to load the data into the process storage. To check the state of

the data set, perform the following HTTP request.

POST "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/readyForIngestion"

You must send a request body to the server in the following form:

{
 "dataLoadTriggered": true
}

If the data set is ready, you receive a positive response. Otherwise, the response is negative

and contains the corresponding reason

1.3.10 Start the data load

If the data set is ready for data load, create a data ingestion cycle to start the data load using

the following HTTP request.

POST "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/ingestionCycles"

You must send a request body to the server in the following form:

{
 "dataLoadTriggered": true

DATA INGESTION API

14

}

The response for the call above returns the fully-formed data ingestion cycle. The initial state

is INGESTING_DATA. The corresponding data load starts immediately.

Note that if you use the webMethods connector for ARIS Process Mining, the

"dataLoadTriggered" parameter is implicitly set.

1.3.11 Retrieve cycle state

To verify that the data load was successful, perform the following HTTP request.

GET "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/ingestionCycles/<ingestion cycle>/state"

You receive a response with the current state value (INGESTING_DATA,

COMPLETED_SUCCESSFULLY, or FAILED) and optionally a respective reason.

For more details, see chapter Retrieve cycle state (page 13).

1.3.12 Drop source table

Drops the specified source table.

DELETE "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/sourceTables/<source table>"

1.3.13 Retrieve ingestion cycles

Retrieves all existing ingestion cycles.

GET "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/ingestionCycles"

1.3.14 Cancel ingestion cycle

Cancels the specified cycle.

PUT "https://<hostname>/mining/api/pub/dataIngestion/v1/dataSets/<data

set>/ingestionCycles/<ingestionCycle>/canceled"

DATA INGESTION API

15

1.4 API Methods

You can use the following endpoints provided by the data ingestion API for your HTTP

requests.

1.4.1 Path Section: Data Set

All endpoints, except the API version endpoint, are used in the context of a specific data set.

All endpoints with a data set context contain the following URL section:

/dataSets/{dataSet}

The {dataSet} parameter refers to the technical key of the data set and uses that value at

runtime. You can take the value from the URL in the address bar of the browser when opening

the corresponding data set.

The URL has the following format:

https://<hostname>/#<project_room>/dataCollection/y.dataset.<key>

The <key> parameter is based on the selected display name of the data set and should be

readable. Use this key in all your API requests to this specific data set.

Example

https://ariscloud.com/#myprojectroom/dataCollection/y.dataset.mydataset

1.4.2 Path Section: Ingestion cycle

Several endpoints are used in the context of a specific ingestion cycle, such as commit data

upload cycle (page 20), return ingestion cycle state (page 20), and cancel ingestion cycle

(page 19). Because of this, they all include the following section:

/ingestionCycles/{ingestionCycle}

The {ingestionCycle} parameter refers to the technical key of the ingestion cycle and uses

that value at runtime. Such a key is generated every time a new ingestion cycle is created. It

is returned as value of the key property of the cycle after it is created or when all existing

ingestion cycles are retrieved from the system using the API.

1.4.3 Retrieve API version

Retrieves the current API version of ARIS Process Mining.

GET /api/pub/dataIngestion/version

DATA INGESTION API

16

Output: Current API version

1.4.4 Retrieve source table definitions

Retrieves the column structure (name, data type, format) of the specified source tables.

GET /api/pub/dataIngestion/v1/dataSets/{dataSet}/sourceTableDefinitions

Input: Query parameter 'fqns' to filter by fully-qualified names

Output: List of SourceTableDefinition objects

1.4.5 Create or replace source tables

Creates or replaces a source table in ARIS Process Mining.

It depends on the parameter forceReplace. When parameter forceReplace = true, the tables

with the same identifier will be replaced and all previously stored data deleted.

POST /api/pub/dataIngestion/v1/dataSets/{dataSet}/sourceTables

Input:

 List of SourceTableDefinition objects

 When creating a source table, the name, namespace, and columns are required. The

other properties are optional.

Note that "_ARIS" is not allowed as a namespace.

 When replacing a source table,

- specify the identifier of the existing table in the form of a key, fully qualified name,

or name and namespace. If you specify several identifiers, the priority order is key >

fully qualified name > name and namespace. Identifiers with low priority are ignored if

an identifier with high priority is present.

- All other properties (excluding the identifiers) are optional. If a property is not set, it

re-uses the values of the existing table. Note that the columns of a table are set in

the same property. To remove a column, omit the column from the body. To add a

column, repeat the information of the existing columns and include the new column.

Note that "_ARIS" is not allowed as a namespace.

DATA INGESTION API

17

 The query parameter forceReplace indicates whether to replace the existing source

tables with the same identifier. When the tables are replaced, all previously stored source

data is deleted. If the parameter is not set to true, requests that would require

replacement (for example, include the identifier of an existing table) are rejected.

Output:

List of SourceTableDefinition objects based on newly created or replaced source tables

1.4.6 Update a source table definition

Updates a source table definition, but leaves the existing data unchanged. It can be used to

 change the fully qualified name, namespace, and/or name.

Note that "_ARIS" is not allowed as a namespace.

 change the table type from regular table to incremental.

 (re-)define a merge key for an incremental table.

 Add columns to an incremental table.

 Configure the schema of subsequent data deliveries to no longer contain particular

columns. Existing data will still include the column.

Columns of a regular table cannot be changed with this method. Use the Create or

replace source tables (page 16) endpoint instead.

POST /api/pub/dataIngestion/v1/dataSets/{dataSet}/sourceTables/{sourceTable}/definition

Input:

SourceTableDefinition object

 The source table must already exist.

 Existing data is preserved.

 Therefore, not all changes to the definition are permitted.

 The source table in the URL can either be a key or a fully qualified name.

 All properties of the source table definition are optional. If the properties are not set,

the values of the existing table are reused.

Note the following.

The columns of a table will be set as a whole, that is, to remove a column just omit it

from the body. To add a column, repeat the information of the existing columns and

include the new column.

If both fully qualified name and name and/or namespace are provided in the body,

the fully qualified name takes precedence.

Output:

DATA INGESTION API

18

List of SourceTableDefinition objects based on newly created or replaced source tables

Note that updating the data of an incremental table can involve changes to the schema of the

source table.

1.4.7 Check if data set is ready for ingestion

The check confirms that the uploading of the data or the data load can start.

Note that you can check the readiness state for EITHER starting a data load OR uploading the

data, but not for both at the same time!

POST /api/pub/dataIngestion/v1/dataSets/{dataSet}/readyForIngestion

Input: DataIngestionCycle containing

 either SourceTableDefinitions based on the existing, fully configured data sources to

update. You can specify any identifier. The other properties are optional and will be

ignored.

 or a Boolean flag that indicates to start a data load. Specifying a list of source table

definitions and setting the Boolean flag to true is not supported at this time. If you must

run an upload after a data load, you must perform those separately as two data ingestion

cycles.

Output: IngestionReadyState. Note that the readiness check for a data load does not

necessarily consider all existing validation issues. Even when the user interface shows some

validations issues, the readiness check might report a successful check.

1.4.8 Create a new ingestion cycle

Creates a new ingestion cycle.

Note that an ingestion cycle is created EITHER for starting a data load OR uploading data, but

not for both at the same time.

POST /api/pub/dataIngestion/v1/dataSets/{dataSet}/ingestionCycles

Input: DataIngestionCycle containing

 either SourceTableDefinitions based on the existing, fully configured data sources to

update. You can specify any identifier. The other properties are optional and will be

ignored.

DATA INGESTION API

19

 or a Boolean flag that indicates to start a data load. Specifying a list of source table

definitions and setting the Boolean flag to true is not supported at this time. If you must

run an upload after a data load, you must perform those separately as two data ingestion

cycles.

You must specify the input in the response body. In the case of data load, you must set

"dataLoadTriggered" to true in the response body as follows:

{
 "dataLoadTriggered": true
}

Output: New DataIngestionCycle

1.4.9 Cancel ingestion cycle

Deletes an existing ingestion cycle (identified by ingestion cycle key).

PUT

/api/pub/dataIngestion/v1/dataSets/{dataSet}/ingestionCycles/{ingestionCycle}/canceled

Output: Canceled DataIngestionCycle

1.4.10 Upload data

Uploads data to ARIS Process Mining for the specified source table(s) and automatically sorts

the columns based on the column order in ARIS Process Mining.

Data must have the correct structure (number and order of columns with correct data types

and formats).

POST /api/pub/dataIngestion/v1/dataSets/{dataSet}/sourceTables/{sourceTable}/data

Input:

 Source table identifier as path parameter. The identifier can be either a key or a fully

qualified name.

 List of objects as body, representing the new source data entries.

 The order of the columns corresponds to the order specified when creating the

source table and returned by the GET operation on the sourceTableDefinitions.

 The timestamp data can only be passed as strings formatted in the date and time

format of the corresponding source table column.

 Large sets of data can be uploaded over multiple requests. The data in each request

is stored in a temporary form on the server side.

DATA INGESTION API

20

Output: Success result if the data was received without error.

1.4.11 Drop source table

Drops a specified source table (definition and content).

DELETE /api/pub/dataIngestion/v1/dataSets/{dataSet}/sourceTables/{sourceTable}

Input: Source table identifier as path parameter. The identifier can either be a key or a fully

qualified name.

Output: Success result if deletion was performed without error.

1.4.12 Commit data upload cycle

Notifies ARIS Process Mining that the data upload is complete and the start of the ingestion in

ARIS Process Mining begins.

When the upload in ARIS Process Mining completes without an error, the status of the

ingestion cycle is updated to "COMPLETED_SUCCESSFULLY". This is a precondition for

starting a new ingestion cycle for loading the data.

PUT

/api/pub/dataIngestion/v1/dataSets/{dataSet}/ingestionCycles/{ingestionCycle}/dataCompl

ete

Output: Running DataIngestionCycle

1.4.13 Retrieve ingestion cycles

Retrieves all existing ingestion cycles for a data set.

GET /api/pub/dataIngestion/v1/dataSets/{dataSet}/ingestionCycles

Output: List of DataIngestionCycle objects

The endpoint is available from ARIS Process Mining version 10.18.

1.4.14 Return ingestion cycle state

Retrieves the state of the specified ingestion cycle.

GET /api/pub/dataIngestion/v1/dataSets/{dataSet}/ingestionCycles/{ingestionCycle}/state

Output: The state value is based on the state of the corresponding run log entry.

DATA INGESTION API

21

1.5 Data transfer objects (DTOs)

You can use the following data transfer objects (DTOs) for the data ingestion API.

1.5.1 SourceTableDefinition

As input

Only in list form, either standalone as presented here or as part of a data ingestion cycle

(DataIngestionCycle) (see below). Properties can be mandatory or optional, depending on if a

table should be created or replaced.

[
 {
 "key": "prq_some_namespace_e",
 "name": "example_table_o",
 "namespace": "some_namespace",
 "fullyQualifiedName": "some_namespace.example_table_o",
 "persistenceMode": "OVERWRITE|APPEND",
 "mergeKey": ["PROCESSOR_GROUP", "PROCESSOR"],
 "columns": [
 {
 "dataType": "DOUBLE",
 "name": "CATEGORY"
 },
 {
 "dataType": "STRING",
 "name": "CATEGORY_NAME"
 },
 {
 "dataType": "FORMATTED_TIMESTAMP",
 "name": "CREATED",
 "format": "yyyy/MM/dd HH:mm:ss"
 },
 {
 "dataType": "STRING",
 "name": "PROCESSOR"
 },
 {
 "dataType": "STRING",
 "name": "PROCESSOR_GROUP"
 }
]
 }
]

As output

Only in list form, either standalone as presented here or as part of a data ingestion cycle

(DataIngestionCycle) (see below).

[

DATA INGESTION API

22

 {
 "key": "prq_some_namespace_e",
 "name": "example_table_o",
 "namespace": "some_namespace",
 "fullyQualifiedName": "some_namespace.example_table_o",
 "persistenceMode": "OVERWRITE",
 "mergeKey": ["PROCESSOR_GROUP", "PROCESSOR"],
 "columns": [
 {
 "dataType": "DOUBLE",
 "name": "CATEGORY"
 },
 {
 "dataType": "STRING",
 "name": "CATEGORY_NAME"
 },
 {
 "dataType": "FORMATTED_TIMESTAMP",
 "name": "CREATED",
 "format": "yyyy/MM/dd HH:mm:ss"
 },
 {
 "dataType": "STRING",
 "name": "PROCESSOR"
 },
 {
 "dataType": "STRING",
 "name": "PROCESSOR_GROUP"
 }
]
 }
]

 Keys will be generated on the server.

 The fully qualified name (fullyQualifiedName) consists of the name and namespace,

separated by '.'.

 The persistence mode (persistenceMode) can either be OVERWRITE or APPEND. See

chapter Persistence mode (page 29) for more details.

 Columns can be of type DOUBLE, LONG, STRING, and FORMATTED_TIMESTAMP.

 The merge key (mergeKey) is optional. The merge key is only required for merging new

data with existing data.

NOTE

When a source table definition is created or updated, an _ARIS_lastChanged column of

timestamp type is always automatically added to the uploaded table. The _ARIS_ prefix is

reserved for internal use. You must not specify columns whose names begin with _ARIS_,

and requests to create tables containing such a column name will fail.

DATA INGESTION API

23

When a source table definition is retrieved from the API, columns whose names begin with

ARIS are omitted. If you updated a source table definition using the API (as opposed to

replacing it) a subsequent GET will only return the columns configured by that update and

omit the "removed" columns. However, these columns and their existing data are of course

still present and are still processed within ARIS Process Mining. This is to ensure that an API

client always receives the table in its most recent form (using its most recent schema), and

contains only columns that are known to it.

1.5.2 DataIngestionReadyState

Used only as output after a readiness check. In case of 'not ready', the ready property is set to

'false' and the object contains a cause with code and message.

{
 "ready": false,
 "cause": {
 "code": "INR1001",
 "message": "The data set is currently being processed"
 }
}

Causes consist of a code and a message to indicate why exactly the data set is not ready. The

code is four digits long and always prefixed with "INR" for "Ingestion - Not Ready". A list with

the concrete codes and the semantics can be found in the table below.

Code Semantic

INR1000 Undefined.

Used for unexpected situations.

INR1001 Data set in process.

The referenced data set is locked by another process (data ingestion cycle,

manual data load, etc.).

The user must wait until the locked is lifted and repeat the request.

DATA INGESTION API

24

Code Semantic

INR1002 Living process quota exceeded.

Usage of the data ingestion API is limited to data sets with a 'living process'

license.

The assigned 'living process' license defines an upper bound (process quota) for

the number of process instances within the corresponding data set.

Code INR1002 indicates that the process quota defined by the assigned 'living

process' license is already exceeded and it is not allowed to ingest more data.

The user can reduce the number of process instances within the dataset by

deleting process instances or alternatively assign a 'living process' license with a

higher process quota.

INR1003 Unexpected source table type.

Indicates that at least one of the referenced source tables has an unexpected

type, for example, was created via the CSV upload.

To use a table in the context of the data ingestion API, it either needs to have

been created by that API or updated by it via the replace source table

functionality.

INR1004 No data to load.

Indicates that there is no new pending data for the tables referenced in the data

modeling section. Therefore a data load is not necessary.

1.5.3 DataIngestionCycle

As input

In case of data upload

{
 "dataUploadTargets": [
 {
 "fullyQualifiedName": "some_namespace.example_table_a"
 }
]
}

In case of data load

{
 "dataLoadTriggered": true
}

DATA INGESTION API

25

As output

Either in list form

[
 {
 "key": "api_2",
 "dataUploadTargets": [
 {
 "key": "prq_some_namespac_38",
 "name": "example_table_a",
 "namespace": "some_namespace",
 "fullyQualifiedName": "some_namespace.example_table_a",
 "persistenceMode": "APPEND",
 "columns": [
 {
 "dataType": "DOUBLE",
 "name": "CATEGORY"
 },
 {
 "dataType": "STRING",
 "name": "CATEGORY_NAME"
 },
 {
 "dataType": "FORMATTED_TIMESTAMP",
 "name": "CREATED",
 "format": "yyyy/MM/dd HH:mm:ss"
 },
 {
 "dataType": "STRING",
 "name": "PROCESSOR"
 },
 {
 "dataType": "STRING",
 "name": "PROCESSOR_GROUP"
 }
]
 }
],
 "dataLoadTriggered": false,
 "state": {
 "value": "INGESTING_DATA"
 }
 },
 {
 "key": "api_1",
 "dataLoadTriggered": true,
 "state": {
 "value": "COMPLETED_SUCCESSFULLY"
 }
 }
]

or standalone after creation, update, or cancelation, for example.

In case of data upload

DATA INGESTION API

26

{
 "key": "api_1",
 "dataUploadTargets": [
 {
 "key": "prq_some_namespac_38",
 "name": "example_table_a",
 "namespace": "some_namespace",
 "fullyQualifiedName": "some_namespace.example_table_a",
 "persistenceMode": "APPEND",
 "columns": [
 {
 "dataType": "DOUBLE",
 "name": "CATEGORY"
 },
 {
 "dataType": "STRING",
 "name": "CATEGORY_NAME"
 },
 {
 "dataType": "FORMATTED_TIMESTAMP",
 "name": "CREATED",
 "format": "yyyy/MM/dd HH:mm:ss"
 },
 {
 "dataType": "STRING",
 "name": "PROCESSOR"
 },
 {
 "dataType": "STRING",
 "name": "PROCESSOR_GROUP"
 }
]
 }
],
 "dataLoadTriggered": false,
 "state": {
 "value": "INGESTING_DATA"
 }
}

In case of data load

{
 "key": "api_1",
 "dataLoadTriggered": true,
 "state": {
 "value": "INGESTING_DATA"
 }
}

DATA INGESTION API

27

1.5.4 DataIngestionCycleState

Used only as output, standalone or as part of a data ingestion cycle (DataIngestionCycle) (see

above). Possible states are: ACCEPTING_DATA, INGESTING_DATA,

COMPLETED_SUCCESSFULLY, CANCELED, and FAILED.

In case of 'FAILED', it will return a cause. Causes consist of a code and a message to indicate

what happened exactly. The code is four digits long and always prefixed with "IER" for

"Ingestion - Error".

{
 "value": "FAILED",
 "cause": {
 "code": "IER1000",
 "message": "An unexpected error occurred"
 }
}

TABLEDATA

Used only as input for data upload. Values must conform to the schema of the targeted

source table. Null is a valid value.

[
 [1,"A","2021/05/10 12:13:14",1.1,"Distribution Center
Team","Distribution"],
 [2,"B","2021/06/11 15:16:17",2.2,"Distribution Center
Team","Distribution"],
 [3,"C","2021/07/12 18:19:20",3.3,null,"Sales"],
 [4,"D","2021/08/13 21:22:23",4.4,"Dealer Sales","Sales"]
]

STRINGCOLUMN

Used only as part of a source table definition (SourceTableDefinition) (see above).

LONGCOLUMN

Used only as part of a source table definition (SourceTableDefinition) (see above).

DOUBLECOLUMN

Used only as part of a source table definition (SourceTableDefinition) (see above).

FORMATTEDTIMESTAMPCOLUMN

Used only as part of a source table definition (SourceTableDefinition) (see above).

DEFAULTRESULT

Used only as standalone output, either when the operation performed does not have a

dedicated result object itself (deletion of a source table, upload of source data) or when an

DATA INGESTION API

28

error occurs on the server (any operation). The successful property of this object is either set

to true or to false accordingly.

In case of false, the object will also contain a cause with a message.

{
 "successful": false,
 "cause": {
 "message": "An unexpected error occurred"
 }
}

APIVERSION

Used only as output after an API version check.

{
 "apiVersion": "3.2"
}

1.5.5 Authentication response

The response of your authentication request to the ARIS cloud is a JSON object that includes

the tenant, a URL, and an access token.

{

"tenant": "<project_room>",

"token": "<access_token>,

"url": "<any_URL>"

}

Example
{
"tenant": "myProjectRoom",
"token":"...eyJpYXQiOjE2NjE5MzY3NzgsImp0aSI6IjBqLWg2TkZqc3RLb0pTZ1U1dXJUY
mRXcUs3NGplRV9EZzRyeXhOeDN5dkxkakJsRFI2Z2NzUEJueGpRTmNHTXU0cFo2R2loazMwQ0
NMOUR4d0lQdiIsInN1YiI6ImR...",
"url": "https://processmining.ariscloud.com"
}

The response of your authentication request to the ARIS Enterprise cloud is a JSON object

that includes an application token:

{
'applicationToken': '…'
}

1.6 Valuable information

DATA INGESTION API

29

1.6.1 Persistence mode

All source tables have a persistence mode that determines how the new data is processed on

the server.

There are three different persistence modes:

OVERWRITE

This is the default setting to follow the standard behavior from previous versions. If this mode

is set, the new uploaded data overwrites the existing data. The overwritten data is lost and

cannot be recovered. If required, you must upload the overwritten data again.

APPEND (WITHOUT MERGE KEY)

If this mode is set, instead of overwriting the already persisted table data on the server, new

uploaded data is appended to the existing data. The new data rows are added at the end in

the order in which they are received. This causes the size of the existing source table to grow.

Persisting old data a second time with this setting (as if they were new rows) will lead to

duplicate entries. This can impact the accuracy of the analysis results.

Note that currently the only way to select this mode for a source table is to use the Data

Ingestion API to either create a new table or replace an existing one.

APPEND WITH MERGE KEY

If this mode is set, the uploaded data is merged with already persisted table data on the

server. In merge mode, new data is appended to the table in additional rows and existing rows

of the table will be overwritten individually only if the corresponding row of the uploaded table

is more recent. At the end of the data upload, the source table contains all the data.

The ingestion API uses a merge key to merge existing data and new data in the source table.

You can use the merge mode by setting the merge key in the source table definition (page 21).

You also must set the persistence mode (persistenceMode) to APPEND in the source table

definition.

To configure a merge key for an existing table, you must send a source table definition with

the new merge key to the server. To do this, you can use the Create or replace source tables

(page 16) endpoint. The merge key is automatically added to a source table when the source

table is created or replaced (page 16).

NOTE

A source table with the OVERWRITE persistence mode corresponds to a standard table in ARIS

Process Mining and a source table with the APPEND consistence mode and with a specified

merge key corresponds to an incremental table accordingly.

DATA INGESTION API

30

1.6.2 Limits

REQUEST SIZE

The maximum accepted size of a request to create or update data is limited to 100 MB. If this

maximum is exceeded, the request is rejected. If you want to create or update more data, split

the data into multiple requests.

SOURCE TABLES

TOTAL NUMBER OF SOURCE TABLES

The maximum number of source tables that can be created using the data ingestion API is

100. Each time new tables are created using the API, a check verifies if the maximum number

is exceeded. If the number is exceeded, the corresponding request is rejected. All existing

tables are counted towards the maximum allowed number, regardless of their origin (API,

extraction, manual file upload). This limit does not affect the replacement of the source table.

NUMBER OF SOURCE TABLES PER REQUEST

The maximum number of source tables that can be created with one request is 50. If this

number is exceeded, the corresponding request is rejected.

NUMBER OF COLUMNS

The maximum number of columns that can be created for a source table using the data

ingestion API is 500. If this number is exceeded, the corresponding request is rejected. This

limit affects both the creation and replacement of the source table.

TOTAL NUMBER OF TASKS

The maximum number of tasks (including ingestion cycles) that can be maintained

simultaneously is 350. Each time a new cycle is created using the API, a check verifies if the

maximum number is exceeded. If the number is exceeded, the corresponding request is

rejected. All existing tasks that are still maintained count towards the accepted maximum,

independent of their type (ingestion cycle, extraction, manual file upload, data load,

recalculation, process data deletion) or origin (API, automation, manual execution).

Maintained tasks are cleaned up automatically at regular intervals of 30 minutes. The cleanup

routine deletes all completed tasks, except the 250 most recent entries.

UPLOADS

NUMBER OF DATA UPLOAD TARGETS

The maximum number of source tables (data upload targets) that can be referenced by one

upload cycle of the data ingestion API is 100. If this maximum is exceeded, the corresponding

DATA INGESTION API

31

request is rejected. If there are more source tables in need of an upload, they must be split

into multiple upload cycles.

NUMBER OF PENDING DATA PACKAGES

When uploading data using the data ingestion API, the allowed maximum number of pending

upload data packages per table is 50. If this number is exceeded, the corresponding request is

rejected. If more data should get uploaded to the target table, set the containing ingestion

cycle to completed, which starts the server-side persistence. After the persistence (and the

ingestion cycle) is completed, a new cycle can be created to upload the remaining data. Note

that the second upload cycle should only be started immediately if the persistence mode of

the target table is set to APPEND. If the mode is set to OVERWRITE, you must first load the

data (load cycle). Only after loading the data, the remaining data can be uploaded safely.

1.7 webMethods.io connector for ARIS Process Mining

The webMethods.io connector for ARIS Process Mining uses the data ingestion API for

transferring data from any data source to ARIS Process Mining. With the webMethods.io

connector for ARIS Process Mining, you can, for example, create a table, upload data to the

created table, and trigger a data load operation in ARIS Process Mining.

Predefined operations allow you to directly use the most common REST resources and

operations or reduce the complexity of customizing REST operations.

For details on using the webMethods.io connector for ARIS Process Mining, please see the

webMethods.io documentation.

The following list contains all predefined operations that are provided by the webMethods.io

connector for ARIS Process Mining and shows which data ingestion endpoints (page 15) they

refer to.

Operation Reference to endpoints

Retrieve API Version Retrieve API version (page 15)

Retrieve Source Table Definitions Retrieve source table definitions (page 16)

Create Source Tables Create or replace source tables (page 16)

Replace Source Tables Create or replace source tables (page 16)

Update a source table definition Update a source table definition (page 17)

Is Ready for Data Upload
Check if data set is ready for ingestion

(page 18)

Is Ready for Data Load Check if data set is ready for ingestion

DATA INGESTION API

32

Operation Reference to endpoints

(page 18)

Create Data Upload Cycle Create a new ingestion cycle (page 18)

Start Data Load Create a new ingestion cycle (page 18)

Retrieve Cycle State Retrieve ingestion cycles (page 20)

Cancel Cycle Cancel ingestion cycle (page 19)

Commit Data Upload Cycle Commit data upload cycle (page 20)

Drop Source Table Drop source table (page 20)

Retrieve Cycles Retrieve ingestion cycles (page 20)

Upload Data
Retrieve source table definitions (page 16)

Upload data (page 19)

DATA INGESTION API

33

2 Support and legal information

This section provides you with some general information regarding product support and legal

aspects.

2.1 Documentation scope

The information provided describes the settings and features as they were at the time of

publishing. Since documentation and software are subject to different production cycles, the

description of settings and features may differ from actual settings and features. Information

about discrepancies is provided in the Release Notes that accompany the product. Please

read the Release Notes and take the information into account when installing, setting up, and

using the product.

If you want to install technical and/or business system functions without using the

consulting services provided by Software GmbH, you require extensive knowledge of the

system to be installed, its intended purpose, the target systems, and their various

dependencies. Due to the number of platforms and interdependent hardware and software

configurations, we can describe only specific installations. It is not possible to document all

settings and dependencies.

When you combine various technologies, please observe the manufacturers' instructions,

particularly announcements concerning releases on their Internet pages. We cannot

guarantee proper functioning and installation of approved third-party systems and do not

support them. Always follow the instructions provided in the installation manuals of the

relevant manufacturers. If you experience difficulties, please contact the relevant

manufacturer.

If you need help installing third-party systems, contact your local Software GmbH sales

organization. Please note that this type of manufacturer-specific or customer-specific

customization is not covered by the standard Software GmbH software maintenance

agreement and can be performed only on special request and agreement.

DATA INGESTION API

34

2.2 Data protection

Software GmbH products provide functionality with respect to processing of personal data

according to the EU General Data Protection Regulation (GDPR).

Where applicable, appropriate steps are documented in the respective administration

documentation.

2.3 Support

If you have any questions on specific installations that you cannot perform yourself, contact

your local Software GmbH sales organization

(https://www.softwareag.com/corporate/company/global/offices/default.html). To get

detailed information and support, use our Web sites.

If you have a valid support contract, you can contact Global Support ARIS at: +800

ARISHELP. If this number is not supported by your telephone provider, please refer to our

Global Support Contact Directory.

For issues regarding the product documentation, you can also send an e-mail to

documentation@softwareag.com (mailto:documentation@softwareag.com).

ARIS COMMUNITY

 Download products, updates and fixes

 Find information, expert articles, issue resolution, videos, and communication with other

ARIS users

If you do not yet have an account, register at ARIS Community.

PRODUCT TRAINING

You can find helpful product training material on our Learning Portal.

TECH COMMUNITY

You can collaborate with Software GmbH experts on our Tech Community Web site. From here

you can, for example:

 Browse through our vast knowledge base.

 Ask questions and find answers in our discussion forums.

 Get the latest Software GmbH news and announcements.

 Explore our communities.

https://www.softwareag.com/corporate/company/global/offices/default.html
mailto:documentation@softwareag.com

DATA INGESTION API

35

 Go to our public GitHub and Docker repositories and discover additional Software GmbH

resources.

PRODUCT SUPPORT

Support for Software GmbH products is provided to licensed customers via our Empower

Portal (https://empower.softwareag.com/). Many services on this portal require that you

have an account. If you do not yet have one, you can request it. Once you have an account,

you can, for example:

 Add product feature requests

 Search the Knowledge Center for technical information and tips

 Subscribe to early warnings and critical alerts

 Open and update support incidents.

https://empower.softwareag.com/

	Contents
	1 Ingest data using a public API
	1.1 Notes
	1.2 Preparations in ARIS Process Mining
	1.2.1 Create a system integration for the data ingestion API
	1.2.2 Create a connection in the data set

	1.3 Use the data ingestion API
	1.3.1 Authenticate your API client
	1.3.1.1 Authentication via URL parameters is deprecated
	1.3.1.2 Note the technical key of a data set

	1.3.2 Retrieve source table definitions
	1.3.3 Create or replace source tables
	1.3.4 Check if the data set is ready for data upload
	1.3.5 Create a data upload cycle
	1.3.6 Upload data
	1.3.7 Commit data upload cycle
	1.3.8 Retrieve cycle state
	1.3.9 Check if the data set is ready for data load
	1.3.10 Start the data load
	1.3.11 Retrieve cycle state
	1.3.12 Drop source table
	1.3.13 Retrieve ingestion cycles
	1.3.14 Cancel ingestion cycle

	1.4 API Methods
	1.4.1 Path Section: Data Set
	1.4.2 Path Section: Ingestion cycle
	1.4.3 Retrieve API version
	1.4.4 Retrieve source table definitions
	1.4.5 Create or replace source tables
	1.4.6 Update a source table definition
	1.4.7 Check if data set is ready for ingestion
	1.4.8 Create a new ingestion cycle
	1.4.9 Cancel ingestion cycle
	1.4.10 Upload data
	1.4.11 Drop source table
	1.4.12 Commit data upload cycle
	1.4.13 Retrieve ingestion cycles
	1.4.14 Return ingestion cycle state

	1.5 Data transfer objects (DTOs)
	1.5.1 SourceTableDefinition
	1.5.2 DataIngestionReadyState
	1.5.3 DataIngestionCycle
	1.5.4 DataIngestionCycleState
	1.5.5 Authentication response

	1.6 Valuable information
	1.6.1 Persistence mode
	1.6.2 Limits

	1.7 webMethods.io connector for ARIS Process Mining

	2 Support and legal information
	2.1 Documentation scope
	2.2 Data protection
	2.3 Support

