RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

EEEEEEEEEEEEEEEEEEEEEEE
OOOOOOOOOOO




This document applies to ARIS Process Performance Manager Version 10.5.10 and to all
subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in
subsequent release notes or new editions.

Copyright © 2000-2024 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or
registered trademarks of Software GmbH and/or its subsidiaries and/or its affiliates and/or
their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its
subsidiaries is located at https://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices,
license terms, additional rights or restrictions, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products". For certain specific third-party license
restrictions, please refer to section E of the Legal Notices available under "License Terms and
Conditions for Use of Software GmbH Products / Copyright and Trademark Notices of
Software GmbH Products". These documents are part of the product documentation, located
at https://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically
provided for in your License Agreement with Software GmbH.




DATA IMPORT

S € 1T o T=T = | SRR 1
2 | OSSOSO 2
21 WHRAT IS XML ..ttt ettt ae st ne et et e e s e e aensenean 2
2.2 Structure of an XML dOCUMENT ..ottt 2
ST 417 1o F= ) 2= TR Y oY o S 4
3.1 (€T =T o] a i o] ¢ 4 a 1= USROS 4
3.1.1 (0] oYL= o a1/ o 1= 6
3.1.2 (0707 T gT=T o3 o] o =TRSOOSR 7
3.1.3 RelationNs (OPLIONAL) ....cceeeeeceeeceete ettt ettt ae e n e nenn 8
3.1.4 Guidelines for the graph StruCtUre ... 9
3.1.5 ATEFIDULES ..ttt e et nnens 9
3.1.6 XML @XampPle graph.... ettt sttt 12
3.2 System event fOrmMat..... e 14
3.21 Definition of process fragments ... 15
3.2.2 Definition Of MaPPING c..co i 17
3.2.21 Definition of process fragment Mapping .....cccocevererrrrnnrnscsreseseseeseeene 17
3222 Definition of attribute MappPiNg ... 21
3.2.2.21 Attribute transformations ... 24
3.2.2.2.2 Time stamp transformations ... 24
32223 Floating point number transformation ..., 28

3.2.2.3 Organizational UNItS ... 29
3.2.2.4 Special case of attribute MappiNg.....cccovvrevrenrerer e 30

3.2.3 Create fragment definitions in ARIS........co s 32
3.2.31 Modeling the overall ProCess ........cciiierinereee s 32
3.2.3.2 Modeling the process fragment definitions........ccococvvvnrcnncnecneccnenne 33
3.2.3.3 Format of system event file ... 37
3.2.3.4 RUN the ARIS rePOIT ...t 38

3.24 Generating the XML output file ... 40
3.2.5 ST 1o oY =1 Y/ 40
3.3 Data fOormats ..ot 45
3.3.1 Special characters in XML dOCUMENTS ......coovercireiereeeeeeceeeteee et 46
3.4  Generating the process instance fragments........ccovninninecnecnee e 47
3.4.1 Extending the attribute configuration...........cicne 48
3.4.11 Specify the data type of unknown attributes ... 50

3.4.2 Extending the mapping configuration...........ccoeoereinnnsncecee e 55
3.4.3 Multi-valued system event attributes ... 56
3.4.4 Direct import of process attributes.........ccceeeceeiceceeceec e 57
3.4.5 Special case of scaled SYSTEM ... 59
3.4.6 Archiving of XML import fill@S......ooirerresere e 61
3.5 runxmlimport command liN€ Program ........ccececerererenererterese e es 62

3.5.1 rUNXmMIMPOrt argUMENTS. ..o s 63



DATA IMPORT

3.6 IMmport Multiple data SOUICES ...t s ne s 66

3.7 Re-importing the same data ... e 67
3.71 (€T er=To] a1 (] 1 00 -1 SO 67

3.7.2 System event fOrmMat...... e 67

4  Import of process instance-independent data.........cooeeeeecerccecece e 69
4.1 Process instance-independent MEASUIES.........cceiceecieriecceeccieste st st s e s seeeseesnesneas 69
411 Data import fOrmMats.......o e 69

4111 D71 (o] 5 3 4 - O 70

41.1.2 CSV FOrMAT ..t 74

411.3 DI (o] 5 0/ P ) S 75

412 [ F= = T8 =Y [0 0] o Yo ot PSR 78

413 Export of values of process instance-independent data series..........cccoceune.e. 79

414 Deletion of values of process instance-independent data series.................... 80

415 runpikidata command liN€ Program .......c.eirenrnnere et 80

4.2 DIMENSION VAIUES ...ttt sttt e s s s s e et e e s e s e s a e s ne e e ae e s e e s e e sanesanean 83
4.21 XML FOIM@T. ettt 84

422 O3 N VR (0] o 2'0 - ) S 85

42.3 Default and replacement Values ...t 86

424 [ F= = T8 =Y [0 0] o Yo ot PSS 86

425 Delete diMeNSION VAlUES ...t st st s e s s ens 86

4.2.6 rundimdata command liN€ Program.......c.cceeeeeerererrreesesesesee e e 87

4.3 (D=} = J= | i = YA oS 89

5  HOW 0o handle 1arge EPCS.... .o ettt s e e s s 90
5.1 IMPOrT 1arge EPCS ...t 90

5.2 Delete [arge EPCS..... ettt e n e s 90

L S Y o oY= Vo G 91
6.1 Design Of @ ProCess WarEhOUSE .......ccceurerererieirinerie ettt st st se s e sennens 91
6.11 Generate process fragments ... ... 93

6.1.2 Merge process fragments........o e 95

6.1.21 Copying the process instance attributes........ccccovrneneceincncnceeee. 98

6.1.2.2 Making organizational units anoONYMOUS........cccociireieneincecnereeee 98

6.1.3 TYPITY PrOCESSES. ...eitieeetieiecteeeete e eee st ste s e e saesseeteesesseessesseessesseeseessessesssansesseans 99

614 (0= Log B F= LT 0 g T T U1 = LS 99

6.1.5 Checking planned ValUES........c.oceereerereeereeseeee et 100

6.2 [T oTo] @ ft=YoT=T o F-1 o (o 1= 100
6.21 Parameter VAlUES.... ..t 101

7 Legal INTOrMAtioN. ..ottt e e e e 103
741 DOCUMENTATION SCOPE. ..o ettt 103

7.2 RS Y o o 1o o 103



DATA IMPORT

PPM uses XML as a universal data format, which means that the entire PPM system can be
configured using XML files.

This technical reference describes PPM's XML interfaces that are used to import source
system data into the PPM system as XML files. For importing data, PPM uses its own data
formats, namely system event format and graph format.

The source system data is first extracted from almost any source system type (for

example, SAP, IJDBC, CSV) using the PPM process extractors (system event format) or other
adapters.

The Design of a Process Warehouse (page 91) chapter provides a design-based view of how
extracted source system data can be used to generate process instances, which reflect the
seguences of the source system processes and are available for further measure analysis in
PPM.



DATA IMPORT

2 XML

This chapter contains basic information about XML, which is necessary to understand the
subsequent chapters.

21 What is XML?

The abbreviation XML stands for eXtensible Markup Language. XML is a meta-language for
the description of display languages such as HTML. Meta-languages provide the rules
required for the definition of document types. Display languages allow documents to be
output correctly.

2.2 Structure of an XML document

An XML document is a text file and consists of two character types: the actual data and the
so-called tags or markups. Tags are XML instructions, which describe the division of the
document into storage units and its logical structure. The structure itself is saved in a
document type definition (DTD).

Tags are always written in pairs in angle brackets. Every start tag always has a corresponding
end tag.

XML attributes are used within the tags. An attribute may only occur once within a tag.

XML documents consist of elements. An element is made up of two XML tags and the
enclosed text. Blank elements consist of only one tag and always end with a slash (/) before
the final bracket.

You can create simple XML documents with a text editor. In the following example, the DTD is
specified in square brackets in the XML file directly:

<?xml version="1.0"?2>
<!DOCTYPE memberlist
[
<!ELEMENT memberlist (no, name, age)>
<!ELEMENT no (#PCDATA)>
<!ELEMENT name (#PCDATA) >
<!ELEMENT age (#PCDATA)>
1>
<memberlist>
<no>001</no>
<name>Doe, John</name>
<age>27</age>
</memberlist>



DATA IMPORT

If you save this document under the name of your choice with the extension .xml, Internet
Explorer can display the document in a structured form.



DATA IMPORT

This chapter describes the XML-based import of process instance data.

The instance data for the actual processes completed is extracted from the operational
application system (source system) by special software and saved in XML output files. These
output files are imported into PPM using the XML import interface. The internal structure of
the XML files is specified by a DTD (Document Type Definition).

?The PPM XML import interface supports two different import formats, PPM graph format and
PPM system event format.

PPM graph format is used to import already structured process data from process-oriented
application systems (for example, workflow systems). The application-specific adapter
generates XML files, in which process instances including their procedural logic are described
in PPM graph format. In contrast to PPM system event format, complete process instances
can be imported. A merge operation is not necessary. When importing complete process
instances, for a new import of the instance data, complete process instances must always be
imported.

Graph format is used within the PPM system for the universal exchange of EPC-based data.

PPM system event format is used for all activity-oriented application systems, in which the
information making up the process (procedural logic) cannot be extracted.

When importing data in system event format, system events are logged in an XML file. All
types of system events, which are to be imported to PPM, must be defined in process
fragment models before importing. Rules are also defined for how these process fragment
models are merged into an overall process.

PPM generates process instance fragments by mapping the system events to process
fragment models. These are then linked to form process instances.

System event format allows process instances already imported to be extended and modified
by importing delta data.

An XML file in PPM graph format contains a list of graphs (EPCs). Each graph represents a
process instance or a process instance fragment. A graph is made up of different types of
objects, connections and any object relations. The graph and the objects, connections and
relations can have attributes.



DATA IMPORT

The XML file below contains a simple graph, which is made up of three linked objects (event -
function - event):

<?xml version="1.0" encoding="IS0O-8859-1"7?>

<!DOCTYPE graphlist SYSTEM "graph.dtd">

<graphlist>

<graph 1d="00093862" xml:lang="en">

<attribute type="AT ID">XMLGraph-Job-00093862</attribute>
<attribute type="AT EPK KEY">00093862</attribute>
<attribute type="AT PROCTYPE">Standard order</attribute>
<attribute type="AT PROCTYPEGROUP">Order processing</attribute>

<node id="Start" type="OT EVT">
<attribute type="AT_OBJNAME_INTERN">AUFTRAG_ANZU</attribute>
<attribute type="AT OBJNAME">Customer order to be created</attribute>
</node>

<node id="Function" type="OT FUNC">
<attribute type="AT OBJNAME INTERN">AUFTRAG</attribute>
<attribute type="AT OBJNAME">Create customer order</attribute>
<attribute type="AT START TIME">14.2.2000 13:12:57</attribute>
<attribute type="AT END TIME">14.02.2000 13:22:57</attribute>
</node>

<node id="Processor" type="OT ORG">
<attribute type="AT OBJNAME">Ms. Smith</attribute>
</node>

<node id="End" type="OT EVT">
<attribute type="AT OBJNAME INTERN">LIEFERUNG ANZU</attribute>
<attribute type="AT OBJNAME">Delivery to be created</attribute>
<attribute type="AT ID">XMLGraph-Job-Evt2</attribute>

</node>

<edge type="CXN FOLLOWS" source="Start" target="Function" />
<edge type="CXN FOLLOWS" source="Function" target="End" />
<relationtype name="REL CARRY OUT">
<relation source="Processor" target="Function">
<attribute type="AT KI PK R">7.5 EUR</attribute>
<attribute type="AT KI RNUM">1</attribute>
</relation>
</relationtype>
</graph>
</graphlist>



DATA IMPORT

When imported into PPM, the structure of XML files in graph format is verified against the

following DTD:

4| ELEHENT graphlist (graphsi>

The XKL file conteing a listof graphs
(&t |=ast ona qraph.

<!ELEMENT graph f{attribute*, ncde®, edge*)>

<IATTLIET graph id ID #REQUIRED ml:lang HNMTOHEH ‘de’>

& graph can have atnbues, objacts
{nade) and connections . A graph is
idenified bey an 10

An object can hawve atiributes and must
b of ang af tha spechied hpes

<LELEMENT nods (aTTributs=)s
SLATPLIST nads id HHTOREN #RECUTRED
type | OT_FUNC

| oT_EwT

| o _oss

| O _RULEAND

| ©F_RULECR

| of_RULEXOR) #RECQUTIRED
<LELEMENT =dge (attributs=)>
<EATTLIST adge typa ( CHN_FOLLOES

| CHN_UNDIRECTED
) #REQUIRED

Source MMTOKEN #REQUIRED

target MMTOKEN #REQUIRED>

A connechan can have stinbutes, must
b of ans of the spectied bypes, and must
havie @ bath a sounce node and tanget
ks

<LELEMENT
<LATTLIZT

attribute (HPCTDATA) >

attribute type HMTOXKEN #REQUIRED >

An atiribube his @ type dantifiarg.

3.11 Object types

The table below shows all object types used in PPM graph format:

Object type Identifier
Function OT_FUNC
Event OT_EVT

Description

Functions describe activities in
the process. Function attributes
are used to apply actual values for
measure calculations.

Events are process statuses and
describe the status triggering a
function and the result of
executing a function. Process
fragments are merged into
process instances using events of
the same type.



DATA IMPORT

Object type Identifier Description

Organizational OT_ORG Processors of a function can be

unit assigned to organizational units

(optional) by being made anonymous. The
attributes of the organizational
units are the basis for process
cost accounting.

AND rule OT_RULEAND Splits or consolidates a process

(optional) flow. The two process paths that
follow the AND rule are both run
through.

OR rule OT_RULEOR Splits or consolidates a process

(optional) flow. At least one of the process
paths that follow the OR rule is run
through.

XOR rule OT_RULEXOR Splits or consolidates a process

(optional) flow. Only one of the process

paths that follow the XOR rule is
run through.

Within a graph, an object is uniquely identified by its node id. The node id is found in the id

XML attribute for the node XML element. Objects with the same node id are not allowed and

are combined into a single object.

The table below shows all connections allowed in PPM:

Identifier
CNX_FOLLOWS

Connection type Description

Flow connection Links objects forming the
structure of the process
(events, functions, rules) in the

graph.

CXN_UNDIRECTE

connection D

Comment Assigns an organizational unit

to a function that it executes.



DATA IMPORT

The table below shows all relation types allowed in PPM:

Relation type

executes

cooperates with
(without gaps)

cooperates with
(with gaps)

Identifier

REL_CARRY_OUT

REL_WORKS_
TOGETHER

REL_WORKS_
TOGETHER_LONG
—DISTANCE

Description

Creates a relation between a
function and the executing
organizational unit.

Creates a relation between
organizational units as the source
reference object and organizational
units as the target reference object.
A relation calculation is only
performed between function
instances that directly follow one
another and at which organizational
units are specified. There must not
be any other function instances
without organizational units
between them.

Creates a relation between
organizational units as the source
reference object and organizational
units as the target reference object.
Between the function instances at
which the organizational units are
specified additional function
instances without organizational
units may occur. These are ignored
in the relation calculation, that is,
the function instances with the
organizational units do not have to
follow one another directly.



DATA IMPORT

Relation type Identifier Description

Ping pong REL_PING_PONG Creates a relation between

organizational units as the source
reference object and organizational
units as the target reference object.

The actual relation occurrences have the measure attributes that are used as a basis for

calculation of the relation measures defined in the measure configuration - if necessary, for

each individual relation type.

For details of how relations are defined and calculated, refer to the PPM Customizing

Technical Reference.

The general EPC conventions (sequence in connection flow Event - Function - Event) result

in the following guidelines for creating the graph for a process instance:

A process instance must begin and end with one or more events and contain at least one
function.

As rules, process instances can contain exclusively AND rules, as they represent actual
working processes.

An event may not be followed by a branching rule (OR or XOR).

A function may be followed by another function. The linking event between two functions
may be removed.

An event may only be followed by a function or a joining rule.

The following attributes must be specified for graphs of a process instance and its objects:



DATA IMPORT

Attribute name

Process ID
(optional)

Process
identification

Process type

group

Process type

Instance

Identifier Data type Description

AT_EPK_KEY  TEXT

AT_ID TEXT

AT_PROCTYPE TEXT
GROUP

AT_PROCTYPE TEXT

AT_IS_PROC BOOLEAN
INSTANCE

Unique identifier of the
process instance. The
attribute value should
match the graph ID (id tag
of the <graph> XML
element). This attribute
identifies an instance as
completed.

Process identification. The
attribute value is displayed
in the process instance list
and EPC view of the
respective process
instance. The value of the
AT_EPK_KEY attributeis a
useful attribute value for
completed instances.

Name of the process type
group to which the process
instance belongs. If the
attribute is not specified it
is created by the typifier.

Name of the process
instance’s process type. If
the attribute is not specified
it is created by the typifier.

Specifies whether it is the
graph for an individual
process instance (not
specified or value = TRUE)
or an aggregated process
instance (value = FALSE).

10



DATA IMPORT

Attribute name Identifier

Name AT_OBINAME TEXT

Internal name AT_OBINAME_ TEXT
INTERN

Start time AT_START_ TIME
TIME STAMP

End time AT_END_TIME TIME

STAMP

Data type Description

Object name. Is used for
EPC view.

Internal
language-independent
name of the object. Is used
for referencing the object.

Specifies the start time for
execution of a function. Is
optional if the End time
attribute is specified at a

function.

Specifies the end time for
execution of a function. Is
optional if the Start time
attribute is specified at a
function.

The following table gives an example of various object attributes that can be used to calculate

measures.
Attribute name Identifier Type
Number of AT_COUNT_ LONG
executions PROCESSINGS
Performance AT_LS TIME
standard SPAN
Batch user AT_IS_BATCH BOOLEAN
USER

Description

Specifies the frequency of
execution of a function.

Is used to calculate the
average duration of the
execution of an instance.

Specifies whether an
organizational unitis a
batch user (program).

"



DATA IMPORT

3.1.6 XML example graph

The illustration below shows a graph with created process instance attributes (calculated

measures and process type) as an EPC view with active process attribute dialog:

Coeomar asdad
must ba
stndted

Craabe

i}

D00 1430001

SAOTO00 144018

3 Frocess attributes
% [ I Adtribute Type b | attrivute vahe |
Aftripade Type Group V=55 | 1
— | Dot wveesriges sy FALZE
Process alfributes | EPC by | ¥MLGraph-Job-1
= Demndions | Ered tive JAR00 18: 4015
o ol r—— | XMLGraph- Job-1
| Friernl process byps Stanciard order
Organizetionsl unds | |
Product dala [ Ferral process byps group Cirdar procEssing
Rt | Mo, Prodesses 1
= WP | Mumber of processors | 21000
Aggregaton I Frocess Type Shanained crder
Cogt KPis :P'm-c,:':::'nlﬂm (n} et S §-]
Sty Pl | Process cycle time (Factory calendar) | 01:27:19
Tamas KPRe Frocess neeme Order processing
T Ww Processirg frequency (Frocess) 31000
| Rederence point in time | 140200 121257
= driead St time TR0 131257
Mrge attribues
!
[ Gose ][ b |

The associated XML file looks like this (the lines representing objects have a colored

background according to the EPC objects):

<?xml version='1l.0' encoding='IS0-8859-1"7?>
<!DOCTYPE graphlist SYSTEM "graph.dtd">

<graphlist>

<graph id="XMLGraph-Job-1" xml:lang="en">

<attribute
<attribute
<attribute
<attribute
<attribute

type="AT EPK KEY">XMLGraph-Job-1</attribute>
type="AT TIME">14.2.2000 13:12:57</attribute>
type="AT PROCTYPE">Standard order</attribute>
type="AT PROCTYPEGROUP">Order processing</attribute>
type="AT ID">XMLGraph-Job-1</attribute>

<node 1id="XMLGraph-Job-Evtl" type="OT EVT">
<attribute type="AT OBJNAME INTERN" >AUFTRAG_ANZU</attribute>
<attribute type="AT OBJNAME">Customer order to be created</attribute>

</node>

<node id="XMLGraph-Job-Funcl" type="OT FUNC">

<attribute

type="AT TIME">14.2.2000 13:12:57</attribute>

<attribute type="AT OBJNAME INTERN">AUFTRAG</attribute>

12



DATA IMPORT

<attribute type="AT OBJNAME">Create customer order</attribute>
<attribute type="AT END TIME">14.02.2000 01:12:57 PM</attribute>
</node>
<node id="HDMXMLGraph-Job-Funcl" type="OT ORG">
<attribute type="AT OBJNAME">HDM</attribute>
</node>
<node 1id="XMLGraph-Job-Evt2" type="OT EVT">
<attribute type="AT_OBJNAME_INTERN">LIEFERUNG_ANZU</attribute>
<attribute type="AT OBJNAME">Delivery to be created</attribute>
<attribute type="AT ID">XMLGraph-Job-Evt2</attribute>
</node>
<node id="XMLGraph-Job-Func2" type="OT FUNC">
<attribute type="AT TIME">14.2.2000 02:40:01 PM</attribute>
<attribute type="AT_OBJNAME_INTERN">LIEFERUNG</attribute>
<attribute type="AT OBJNAME">Create delivery</attribute>
<attribute type="AT END TIME">14.02.2000 02:40:01 PM</attribute>
</node>
<node 1id="HDMXMLGraph-Job-Func2" type="OT ORG">
<attribute type="AT OBJNAME">HDM</attribute>
</node>
<node 1d="XMLGraph-Job-Evt3" type="OT EVT">
<attribute type="AT OBJNAME INTERN">KOM AUFTRAG ANZU</attribute>
<attribute type="AT OBJNAME">Pick order must be
created</attribute>
<attribute type="AT ID">XMLGraph-Job-Evt3</attribute>
</node>
<node id="XMLGraph-Job-Func3" type="OT FUNC">
<attribute type="AT TIME">14.2.2000 02:40:16 PM</attribute>
<attribute type="AT OBJNAME INTERN">KOM AUFTRAG</attrlbute>
<attribute type="AT OBJNAME">Create pick order</attribute>
<attribute type="AT END TIME">14.02.2000 02:40:16 PM</attribute>
</node>
<node id="XMLGraph-Job-Evt4" type="OT EVT">
<attribute type="AT OBJNAME INTERN">KOM AUFTRAG ALGT</attr1bute>
<attribute type="AT OBJNAME">Pick order created</attribute>
</node>
<edge type="CXN FOLLOWS" source="XMLGraph-Job-Evtl"
target="XMLGraph-Job-Funcl" />
<edge type="CXN FOLLOWS" source="XMLGraph-Job-Funcl"
target="XMLGraph-Job-Evt2" />
<edge type="CXN UNDIRECTED" source="HDMXMLGraph-Job-Funcl"
target="XMLGraph-Job-Funcl">
<attribute type="AT COUNT PROCESSINGS">1</attribute>
</edge>
<edge type="CXN FOLLOWS" source="XMLGraph-Job-Func2"
target="XMLGraph-Job-Evt3" />
<edge type="CXN UNDIRECTED" source="HDMXMLGraph-Job-Func2"
target="XMLGraph-Job-Func2">
<attribute type="AT_COUNT_PROCESSINGS">1</attribute>
</edge>
<edge type="CXN FOLLOWS" source="XMLGraph-Job-Func3"
target="XMLGraph-Job-Evt4" />
<edge type="CXN FOLLOWS" source="XMLGraph-Job-Evt2"
target="XMLGraph-Job-Func2" />
<edge type="CXN FOLLOWS" source="XMLGraph-Job-Evt3"
target="XMLGraph-Job-Func3" />

13



DATA IMPORT

</graph>

</graphlist>

Many source systems log the processing of an operation by documenting status changes or

particular system statuses. These are saved in the form of system events (source system

events) with supplementary information. A typical example is a system for order processing,

in which the creation of a new order or the invoicing of an order are saved. A further example

is the SAP R/3 SD module, which documents the statuses and progress of an order in

individual transactions.

Importing process instance fragments in PPM system event format has three stages:

1.

Define process fragments and mapping

All system event types occurring in the source system data, which are to be imported to
PPM (for example, Create order, Invoice order), must first be created as process fragment
definitions in the form of an EPC in the fragment file. In addition, the mapping file must
specify which system event types are to be assigned to which fragment definitions when
imported and which attributes are to be transferred to PPM. In the mapping file, you must
take into account attributes, which allow the calculation of the measures and the merging
of process instance fragments into a process instance (for example, time stamp,
sequential system event number, order number).

Generating a source system XML output file

Individual system events with additional information (attributes with real data) are
extracted from the application system into an XML output file according to the activity

flow.
Generate the process instance fragments

When importing data, a search is made for the fragment definition assigned (type level)
for each system event in the XML output file, and this is then copied to the PPM database.
Attributes of the system event with real data (for example, execution time, processor,
order and customer number) are transferred to objects in the copy of the fragment
definition, generating a process instance fragment (instance level) in the PPM database
that corresponds to this system event.

14



DATA IMPORT

The illustration below highlights the process of generating process instance fragments:

SOUMCE system
XML log file
J:’L PPM system
— _}{ML
— — p— 1 import
P [? + \F |7 + | V I::\“ interface
I 4_‘*‘*"“‘”[_;»
XML process #ML mzpping

fragment definition information

In order to be able to generate process instances for the PPM system from the system events,
each system event to be imported to PPM must be linked to a process fragment definition.
Each system event is assigned to a system event type. A fragment definition must be created
for each system event type.

Each system event type is assigned to an end event in a separate EPC. It is assumed that in
the process, a function must have preceded and triggered the end event. Adding a start event
before the function results in a complete process fragment complying with the modeling
system. The start event of a process fragment can correspond to the end event of another
process fragment.

All process fragment definitions are saved in an XML file as a graph list. The fragment
definition XML file uses the graph format DTD for its format description.

Imported process instance fragments are linked to form a process instance by way of the
start and end events of the individual fragments. These events are known as merge events.

It is not absolutely necessary for the system event and the end event of the process instance
fragment to be the same, for example, if the process for the fragment definition ends with
two end events. What is important is that all system descriptions contained in the system
event are represented by the process instance fragment created.

Example

The source system contains the two system events Order created and Invoice created.
Each of these is transferred to an EPC as an end event and interpreted as the result of the

15



DATA IMPORT

Create customer order or Create invoice function. You must use further knowledge of the
source system to determine the events preceding these two functions. In the example, these
are the Customer order to be created and Invoice to be created events.

The illustration below shows the process fragment description for the two system events.

Source system ¥/ Order ¥ Invoice
event created created

Cus bomear Invles

ordar to to ba

becreated creatad

Create
customar Crazte
Associated [ orter ] [ et l

process fragment

XML process
fragment definition

The file extract below shows a possible fragment definition file for the process fragments

illustrated:

<?xml version="1.0" encoding='IS0O-8859-1"7?>
<!DOCTYPE graphlist SYSTEM "graph.dtd">
<graphlist>
<graph id="FRG_ORD CREATED">
<node id="EVT ORD TOBECREATED" type="OT EVT">
<attribute type="AT OBJNAME">Customer order to be created</attribute>
<attribute type="AT_OBJNAME_INTERN">EVT_ORD_TOBECREATED</attribute>
</node>
<node id="FCT_ CREATE ORDER" type="OT_ FUNC">
<attribute type="AT OBJNAME">Create customer order</attribute>
<attribute type="AT_OBJNAME_INTERN">FCT_CREATE_ORDER</attribute>
</node>
<node id="EVT_ORD_ CREATED" type="OT EVT">
<attribute type="AT OBJNAME">Customer order created</attribute>
<attribute type="AT_OBJNAME_INTERN">EVT_ORD_CREATED</attribute>
</node>
<edge type="CXN FOLLOWS" source="EVT ORD TOBECREATED"
target="FCT CREATE ORDER"/>

16



DATA IMPORT

<edge type="CXN FOLLOWS" source="FCT CREATE ORDER"
target="EVT_ORD_CREATED"/>
</graph>
<graph 1id="FRG_ INVOICED">
<node id="EVT TOBE INVOICED" type="OT EVT">
<attribute type="AT OBJNAME">Invoice to be created</attribute>
<attribute type="AT_OBJNAME_INTERN">EVT_TOBE_INVOICED</attribute>
</node>
<node 1id="FCT_ INVOICE" type="OT FUNC">
<attribute type="AT OBJNAME">Create invoice</attribute>
<attribute type="AT_OBJNAME_INTERN">FCT_INVOICE</attribute>
</node>
<node id="EVT_INVOICED" type="0T EVT">
<attribute type="AT OBJNAME">Invoice created</attribute>
<attribute type="AT_OBJNAME_INTERN">EVT_INVOICED</attribute>
</node>
<edge type="CXN FOLLOWS" source="EVT TOBE INVOICED"
target="FCT_INVOICE"/>
<edge type="CXN FOLLOWS" source="FCT INVOICE"
target="EVT_INVOICED"/>
</graph>
</graphlist>

Fragment definition graphs should not contain any attributes specified. When the process
instance fragments are subsequently merged, only object attributes are taken into account
by default. Process instance attributes to be retained when merging can be specified in the
merge configuration.

3.2.2 Definition of mapping

The mapping file contains the assignment of the system event types to process fragment
definitions and determines the attributes of the system events, which are copied to the
process fragments for which an instance is created in the PPM system.

3.2.21 Definition of process fragment mapping

Process fragment mapping defines which process fragment definitions are used to
instantiate the system event types. It can be controlled by any number of conditions
(condition XML element) linked to one another by AND rules.

17



DATA IMPORT

The rules for the structure of process fragment mapping in the XML mapping file are specified

in the following extract from the file eventmapping.dtd:

<IELEMENT eventmapping ML file contans the event mapping
{processiragmentmepping attnbutemapging )= {process. fragmsant mapping and airibute mapping)
A procass fragmeant mappng mirst hawve & kast one
=IELEMENT processiragmenimapping process fragment group gafiniSion of process fragment
(processfragmentgroup | processiragment) « defnition
«IELENMENT processiragmentgroup A PROCRSS IFEQmerd Qroup Contans o 1east ong

[eondition”, processiragmant+ > PrOCass .
fragment and may have any number of condtions

<ELEMENT procissiragmant (condbon")>
<IATTLIST processiragment
graphed  COATAMRECLERED

A prociss Fragmaent may havd any number of
conditions. The atibute graphld (= process fragment
10 ruest bee masntai nad

=ELEMEMT condtion (valie®)= A condition miay be checked for ey niamber of vialies
T1arrasE rilati 10 @ SOURCE SyYSHEm dvint anbuls the
il of wihich 15 Compsanid 0o the Condgion vales
using a hogical operaton

Diefault aq = aqual (check for value aquity)

Addnonal operators meq, exste, notexists, in, notin

. Al &

Example of conditional process fragment generation (file extract):

<?xml version="1.0" encoding="IS50-8859-1"7?>
<!DOCTYPE eventmapping SYSTEM "eventmapping.dtd">
<eventmapping>
<processfragmentmapping>
<processfragment graphid="FRG ORD CREATED">
<condition eventattributetype="AUFTR TYP">
<value>C</value>
</condition>
<condition eventattributetype="MAT NR" logicaloperator="in">
<value>123456</value>
<value>56789</value>
<value>78901</value>
</condition>
</processfragment>

</processfragmentmapping>
<attributemapping>

</attributemapping>

</eventmapping>

The FRG_ORD_CREATED process fragment is created if the following two conditions are
met:

* The relevant system event represents an order document (AUFTR_TYP attribute has the

value C).

= The value of the MAT_NR system event attribute corresponds to one of the specified
material numbers.

18



DATA IMPORT

A process fragment definition must not contain a condition. In this case, the same specified
fragment definition is used for each imported system event. The objects in the instanced
fragment are specified in the subsequent attribute mapping.

Process fragment definitions can be summarized into groups. This results in the following
advantages:

= Performance increase

» Simplified creation of process fragment mapping definitions

= Improved clarity

The two process fragment definitions below are contained in an XML mapping file:

<processfragment graphid="AUFTRAG ANLEGEN">
<condition eventattributetype="AUFTR TYP">
<value>C</value>
</condition>
<condition eventattributetype="CHARGEN PFL" logicaloperator="neg">
<value>X</value>
</condition>
</processfragment>
<processfragment graphid="CHPLICHT AUFTRAG ANLEGEN">
<condition eventattributetype="AUFTR TYP">
<value>C</value>
</condition>
<condition eventattributetype="CHARGEN PFL">
<value>X</value>
</condition>
</processfragment>

The first process fragment AUFTRAG_ANLEGEN is created for a system event of the Order
document type (attribute value of AUFTR_TYP is C), which is not subject to management in
batches (attribute value of CHARGEN_PFL does not equal X).

The second process fragment CHPFLICH_AUFTRAG_ANLEGEN is created for a system
event of the Order document subject to management in batches type (attribute value of
AUFTR_TYP is C and attribute value of CHARGEN_PFL is X).

The two process fragments shown can be summarized in a process fragment group:

<processfragmentgroup>
<condition eventattributetype="AUFTR TYP">
<value>C</value>
</condition>

<processfragment graphid="AUFTRAG ANLEGEN">
<condition eventattributetype="CHARGEN PFL" logicaloperator="neq">
<value>X</value>
</condition>
</processfragment>

19



DATA IMPORT

<processfragment graphid="CHPLICHT AUFTRAG ANLEGEN">
<condition eventattributetype="CHARGEN PFL">
<value>X</value>
</condition>
</processfragment>

</processfragmentgroup>

Summary into a process fragment group means that only one check is made as to whether
the AUFTR_TYP source system attribute has the value C when importing. If this is not the

case, neither of the two process fragments in the process fragment group is instantiated.

Use process fragment groups to improve the clarity of process fragment mapping definitions
and the performance of the import process.

If you do not want to import certain system events in your customizing and if you have not
defined any process mapping for these system events you can suppress the error message to
be expected when importing. To do this, you need to specify conditions in the ignoreevent
XML element, which suppress the output of an error message relating to particular fragments
when these cannot be imported.

For system events specified with ignoreevent mapping, error message output is suppressed
only if the system event cannot be imported. This means that when you import system events
having both process fragment mapping and ignoreevent mapping, these system events are

imported.

Example

You want to import process fragments if the EKKO_BSTYP system event attribute exists and
the MSEG_SHKZG system event attribute has the value S for "Post goods receipt” or H for
"Cancel goods receipt”. Other values of the MSEG_SHKZG attribute result in a warning being
output.

If the EKKO_BSTYP system event attribute does not exist, no process fragments are
imported and no warning is output.

The following process mapping meets the above requirements:

<processfragmentgroup>
<!-- Import goods receipts with MM predecessor documents only
-=>
<condition eventattributetype="EKKO-BSTYP" logicaloperator="exists"/>
<processfragment graphid="GWEOF">
<!-- Post goods receipt
-—>
<condition eventattributetype="MSEG-SHKZG" logicaloperator="eqg">
<value>S</value>
</condition>
</processfragment>

20



DATA IMPORT

<processfragment graphid="GWSOF">
<!-- Cancel goods receipt
-=>
<condition eventattributetype="MSEG-SHKZG" logicaloperator="eqg">
<value>H</value>
</condition>
</processfragment>
</processfragmentgroup>

<ignoreevent>
<!-- Do not output warning if no MM predecessor document exists
because these system events are not to be imported
—-=>
<condition eventattributetype="EKKO-BSTYP" logicaloperator="notexists"/>
</ignoreevent>

3.2.2.2 Definition of attribute mapping

This chapter describes the configuration of attribute mapping. Attribute mapping copies
source system attributes to object and process attributes of the fragment instance (PPM
attributes).

The rules for the structure of attribute mapping in the XML mapping file are specified in the
following extract from the file eventmapping.dtd:

<IELEMENT attributemapping [(ebisctattributes®;

processattributen®, avtomapping®)>

A

IELEMENT processattributes (attribute®)>
JATTLIST procesmattribunes

graphid CDATA WREQUIRED:

IELENENT cbjectattributes lorgunit®; attribuce®)>
IATTLIET objsctattribatss

skjectname COATA #REQUIRED
graphid COATA #IHPLIED>

< | ELEHENT org‘uni: fattribute®) >

CIATTLIST orgunit
aventatt ributeatype CDATA FIMPLIED
nuseventattributetyps CDATA FIMHPLIED:

<1 ELEMENT attribute
(fevantattributstyps | valus )+,
vrangformation?) >
LIATTLIST atrribute
ppmatt ributetype CDATA FIMPLIED:

CIELEMENT saventattributetyps (FPCDATAN >

<IELEMENT value (WPCDATA)>

CIELEMENT tramsformation EMPIY>
<IATTLIET transforsation
type  NMTOREN “timestamp”
format CODATA FREQUIRED>

Stant of atinibute mappang for any number of obpdts
Of proCersts

(Cartan processos (graphid amibute) can have
bt

Copects cian haree organ 2obonal urits and atintates
Thesy herve & Ueouse name and can bs assagned
process fragments (graphid afnbuse)

Orgarezational units can hawe afinibubes  The narms of
e orgoni Tabonal w15 extractid from the specified
SOACE SYS M event almbute | eventattributetype) The
number of executions 15 optionaly specied together with
numeventattributetype

A PP aitnbate (ppmattributtype) is assigned the
walud composed of any nurnber of Scuncs System

i aTnDUts valuos (eventattributetype) and
constants (waiwe) It is possibis bo have the vaiue

s odmed

Specificabon of the source Sysiem event afnbube
Specicabon of & COnStant value
Spedcabon of the atnbule value transfoemaon A

ransiommaticon has & hypo and @ bormat ¢hanacior
sinog

PPM attribute values can be made up of any combination of attribute values of the system
event and unalterable texts. The optional specification of the internal PPM attribute name

21



DATA IMPORT

allows source system attributes to be copied to any PPM attributes. PPM attributes can be
assigned constant values (value XML element).

Example 1 (standard mapping)

<attribute>
<eventattributetype>MATERIAL CLASS</eventattributetype>
</attribute>

The value of the MATERIAL_CLASS system event attribute is copied to the PPM attribute of
the same name but including the prefix (for example, AT_) specified in the attributeprefix
XML attribute of the data source, that is, AT_MATERIAL_CLASS.

Example 2 (explicit mapping)

<attribute ppmattributetype="AT MATERIAL">
<eventattributetype>MAT NR</eventattributetype>
</attribute>

The value of the MAT_NR system event attribute is copied to the AT_MATERIAL PPM
attribute.

Example 3

<attribute ppmattributetype="AT IS SHARED FUNCTION">
<value>TRUE</value>
</attribute>

The AT_IS_SHARED_FUNCTION PPM attribute is assigned the constant TRUE.

Example 4

<attribute ppmattributetype="AT ID">
<eventattributetype>AUFTRAGS SYSTEM</eventattributetype>
<value>-</value>
<eventattributetype>SYSTEM NR</eventattributetype>
<value>#</value>
<eventattributetype>AUFTRAGS NR</eventattributetype>
<value>-</value>
<eventattributetype>POSITIONS NR</eventattributetype>
<value>-</value>
<eventattributetype>AUFTRAGS TYP</eventattributetype>
</attribute>

The AT_ID PPM attribute is assigned the value XYZ-401#4711-10-C.

22



DATA IMPORT

ASSIGN ATTRIBUTES TO OBJECTS

Created PPM attributes are assigned to particular objects in the fragment instance using the
objectattributes XML element. The objname XML attribute specifies the identifier of the
relevant object (AT_OBINAME_INTERN object attribute). Optionally, the object specification
can be refined by specifying the graph ID (graphid XML attribute).

The example below copies the value of the END_TIME source system attribute to the
AT_END_TIME PPM object attribute for the function with the identifier SAP.AUFT_ANLEG in
the AUFTRAG_ANLEGEN fragment instance (graph ID of the fragment definition):

<attributemapping>
<objectattributes objectname="SAP.AUFT ANLEG" graphid="AUFTRAG ANLEGEN">
<attribute ppmattributetype="AT END TIME">
<eventattributetype>END TIME</eventattributetype>
</attribute>
</objectattributes>
</attributemapping>

ASSIGN ATTRIBUTES TO PROCESSES

Created PPM attributes are assigned to particular fragment instances using the
processattributes XML element. It is mandatory to specify the ID of the fragment definition
graph in the graphid XML attribute.

To ensure that attributes transferred directly to the process are retained when merging the
fragment instances, you must extend the merge configuration accordingly. The calculation
effort required to compare the process attributes results in a slight loss of performance.

The example below copies the value of the PROCESSNAME source system attribute to the
AT_PROCTYPE PPM process attribute for the AUFTRAG_ANLEGEN fragment instance
(graph ID of the fragment definition):

<attributemapping>
<processattributes graphid="AUFTRAG ANLEGEN">
<attribute ppmattributetype="AT PROCTYPE">
<eventattributetype>PROCESSNAME</eventattributetype>
</attribute>
</processattributes>
</attributemapping>

23



DATA IMPORT

3.2.2.21 Attribute transformations

If the format of an attribute value for a system event does not match the format required by
the PPM system, the value written in the PPM attribute must be transformed.

3.2.2.2.2 Time stamp transformations

PPM provides various attribute transformations of the type Time stamp transformation.

The time stamp transformations available in the PPM system convert source system time
stamp values in any format to the valid internal PPM format with the proper PPM target data
type. The following table provides you with an overview of available time stamp

transformations:

Transformation PPM target data type
timestamp TIME
timestamp_epoch TIME

timeofday TIMEOFDAY
timeofday_epoch TIMEOFDAY

day DAY

day_epoch DAY

SAGDateTime TIME

TIMESTAMP, TIMEOFDAY, DAY TIME STAMP TRANSFORMATIONS

The standards for the configuration of time stamp transformations are specified in the
eventmapping.dtd document type definition:

<!ELEMENT transformation EMPTY>
<!ATTLIST transformation
type NMTOKEN "timestamp"
format CDATA #REQUIRED

24



DATA IMPORT

In the type XML attribute, you specify which of the available time stamp transformations is to
be used. The timestamp attribute transformation is the default. The format XML attribute
specifies the time stamp format in the source system attribute.

Data in the format attribute corresponds to the Java time stamp format:

Symbol Description Data type Example
G Epoch identifier Text AD
y Year Figure 2003
MM Calendar month Figure 09
MMM Calendar month Text Sep
MMMM Calendar month Text September
d Calendar day Figure 26
h Hour, American notation  Figure 12
(1-12)
H Hour (0-23) Figure 14
m Minute Figure 42
S Second Figure 57
S Millisecond Figure 978
E Day of the week Text Thursday
F Recurrence of weekday in Figure 2
month
D Day of the year Figure 189
Calendar week Figure 27
Week of the month Figure 2 (2. week of the
month)
a Time of day identifier Text PM
k Hour (1-24) Figure 24
K Hour, American notation  Figure 7
(0-11)
z Time zone Text GMT

25



DATA IMPORT

Symbol Description Data type Example
Escape character for text Characters 'Example text'
Simple apostrophe Characters 'Example' 'Text'
Example 1

The value 2002-12-24 (<Year>-<Month>-<Day>) for a source system attribute is transformed

into PPM format using the format string yyyy-MM-dd:

<transformation type="timestamp" format="yyyy-MM-dd"/>

Example 2

Consolidated source system attribute values:

<attribute ppmattributetype="AT END TIME">
<eventattributetype>ERF DAT</eventattributetype>
<eventattributetype>ERF ZEIT</eventattributetype>
<transformation format="yyyyMMddHHmmss" />
</attribute>

In the ERF_DAT source system attribute, the creation date is present in the format
yyyyMMdd and in the ERF_ZEIT source system attribute the creation time is present in the
format HHmmss. Extract from the XML output file:

<event>

<attribute type='ERF DAT'>20011230</attribute>
</event>
<event>

<attribute type='ERF ZEIT'>120730</attribute>
<attribute type='ERF DAT'>20011101</attribute>

</é§ént>
For the first system event, the AT_END_TIME attribute is not created, as the ERF_ZEIT

attribute is not present.

For the second system event, both attributes are present. The attribute values are joined in
the specified sequence to give 2001101120730, then evaluated using the specified format
yyyyMMddHHmmss and transformed into the PPM-compatible time stamp 01.11.2001
12:07:30.

26



DATA IMPORT

Example 3

In the ERF_STD attribute only the hour is recorded in which the system event was created.

The creation time is always thirty minutes after the hour.

<attribute ppmattributetype="AT END TIME">
<eventattributetype>ERF DAT</eventattributetype>
<value>::</value>
<eventattributetype>ERF STD</eventattributetype>
<value>30</value>
<transformation format="yyyyMMdd: :HHmm" />
</attribute>

Associated system event from output file:
<event>

<attribute type='ERF STD'>12</attribute>
<attribute type='ERF DAT'>20011001</attribute>

</event>

The attribute values and constant strings are combined in the specified sequence into the
string 20011001::1230 and transformed using the format yyyyMMdd::hhmm to give the PPM
compatible time stamp 01.10.2001 12:30:00, which is written to the PPM attribute
AT_END_TIME.

The timestamp_epoch time stamp transformation transforms an integer value indicating
the seconds or milliseconds that have passed since January 1, 1970 into the internal PPM
format. In the format XML attribute, you specify whether the integer value indicates the
number of seconds (SECOND) or milliseconds (MILLISECOND) that have passed since
01.01.1970 0:00:00 GMT. The system's current time zone is taken into account in the
calculation.

Use the attribute transformations timeofday_epoch and day_epoch the same way.

Example (timestamp_epoch)

In the WORK_ITEM-END_TIME source system attribute, the number of seconds since
January 1, 1970 is indicated.

<attribute type="WORK ITEM-END TIME">1221482578</attribute>

27



DATA IMPORT

Use the following mapping rule to assign this attribute value to the value of the PPM
AT_END_TIME attribute:

<attribute ppmattributetype="AT END TIME">
<eventattributetype>
WORK_ TITEM-END TIME
</eventattributetype>
<transformation type="timestamp epoch"
format="SECOND"/>
</attribute>

3.2.2.2.3 Floating point number transformation

For the PPM data type DOUBLE, PPM expects values without a thousands separator and with
a period as a decimal separator. If the source system attribute value does not match this
format it needs to be transformed accordingly.

When importing floating point numbers, you can specify in the format attribute the decimal
and thousands separators to be used for parsing a double value if you are using the double
attribute transformation.

<transformation type="double" format=","/>

<transformation type="double" format=".,"/>

If only one character is specified, it must be the decimal separator. If two characters are
specified, the first one must be the thousands separator and the second the decimal
separator.

Example

Attribute values with thousands separator (,) and decimal separator (.)

1.000,00

2.324.213,42

Example

Definition of attribute elements

<attribute ppmattributetype="AT_END_TIME">
<eventattributetype>TIMESTAMP_FIELD</eventattributetype>
<transformation type="double" format=".,"/>

</attribute>

28



DATA IMPORT

Organizational units are created dynamically for functions in the fragment instance.

The orgunit XML element in the mapping file defines an organizational unit. The value of the
eventattributetype XML attribute specifies the name of the source system attribute, which
contains the name of the organizational unit. This name is assigned to the AT_OBJINAME and
AT_OBINAME_INTERN object attributes for the organizational unit.

The following extract from the mapping file creates two organizational units, whose names
are extracted from the PROCESSOR_1 and PROCESSOR_2 source system attributes. The
number of executions of the functions is read from the NUM_OF_PROCESSINGS_1 and
NUM_OF_PROCESSINGS_2 source system attributes specified by the
numeventattributtype XML attribute.

<attributmapping>

<orgunit eventattributetype="PROCESSOR 1"
numeventattributetype="NUM_OF_PROCESSINGS_l"/>

<orgunit eventattributetype="PROCESSOR 2"
numeventattributetype="NUM_OF_PROCESSINGS_2"/>

</attributmapping>

Appropriate attribute mapping allows additional attributes to be created for organizational
units or existing attributes to be overwritten.

The file extract below assigns the value anonymous processor to the name of the
organizational unit displayed in the PPM user interface by overwriting the AT_OBINAME
object attribute regardless of the source system attribute value.

<attributmapping>

<orgunit eventattributetype="PROCESSOR 1">
<attribute ppmattributetype="AT OBJNAME">
<value>anonymous processor</value>
</attribute>
</orgunit>

</attributmapping>

Organizational units are assigned to particular functions in the fragment instance using the
objectattributes XML element. The objectname XML attribute specifies the identifier of the
relevant function (AT_OBJINAME_INTERN object attribute). Optionally, the object

29



DATA IMPORT

specification can be refined by specifying the graph ID (graphid XML attribute).

The example below creates an organizational unit for the function with the identifier
SAP.AUFT_ANLEG from the AUFTRAG_ANLEGEN fragment instance (graph ID of fragment
definition) from the VBAP-ERNAM source system attribute:

<attributemapping>
<objectattributes objectname="SAP.AUFT ANLEG"
graphid="AUFTRAG ANLEGEN">
<orgunit eventattributetype="VBAP-ERNAM"/>
</objectattributes>
</attributemapping>

During the temporary aggregation process, the organizational units created during
anonymization are retained, whereas users are deleted.

To transfer a real user without anonymization, you have to create the AT_ISUSERGROUP
attribute with the value TRUE in the attribute mapping for the corresponding organizational
unit.

In the example below, an organizational unit whose content is extracted from the
UNIT_GROUP_LABEL source system attribute is created for all functions with the internal
object name FCT_A in the process instance fragment with the graph ID FRG_B.

<eventmapping>
<processfragmentmapping>

</processfragmentmapping>
<attributemapping>

<objectattributes objectname="FCT A" graphid="FRG B">
<orgunit eventattributetype="UNIT GROUP LABEL">
<attribute ppmattributetype="AT ISUSERGROUP">
<value>TRUE</value>
</attribute>
</orgunit>

</objectattributes>

</attributemapping>
</eventmapping>

If several identical objects exist within a fragment definition graph (identical attribute value
for AT_OBINAME_INTERN), you need to specify a uniqgue AT_NODE_ID object attribute in
the fragment definition to differentiate between the objects. In the attribute mapping file,

30



DATA IMPORT

instead of the value of the AT_OBJINAME_INTERN object attribute you should specify the
value of the AT_NODE_ID object attribute.

Example
Fragment definition:

The fragment definition contains two Order is created end events.

<graph id="CHPFLICHT_AUFTRAG_ANLEGEN">

<node id="4" type="OT EVT">
<attribute type="AT OBJNAME">Order to be created</attribute>
<attribute type="AT_OBJNAME_INTERN">SAP.AUFT_ANZU</attribute>

</node>

<node 1id="5" type="OT FUNC">
<attribute type="AT OBJNAME">Create order</attribute>
<attribute type="AT_OBJNAME_INTERN">SAP.AUFT_ANLEG</attribute>

</node>

<node 1id="42" type="OT RULEOR"/>

<node id="6" type="OT EVT">
<attribute type="AT OBJNAME">Order is created</attribute>
<attribute type="AT OBJNAME INTERN">SAP.AUFT ANGELEGT</attribute>
<attribute type="AT NODE ID">End event 1</attribute>

</node>

<node id="7" type="OT EVT">
<attribute type="AT OBJNAME">Order is created</attribute>
<attribute type="AT_OBJNAME_INTERN">SAP.AUFT_ANGELEGT</attribute>
<attribute type="AT NODE ID">End event 2</attribute>

</node>

<edge type="CXN FOLLOWS" source="4" target="5"/>

<edge type="CXN FOLLOWS" source="5" target="42"/>

<edge type="CXN FOLLOWS" source="42" target="6"/>

<edge type="CXN FOLLOWS" source="42" target="7"/>

</graph>

Attribute mapping:
At the two Order is created end events, attribute mapping generates a PPM attribute AT_ID

with a different value:

<attributemapping>
<objectattributes objectname="End event 1" graphid="AUFTRAG ANLEGEN">
<attribute ppmattributetype="AT ID">
<value>This is the first end event</value>
</attribute>
</objectattributes>
<objectattributes objectname="End event 2" graphid="AUFTRAG ANLEGEN">
<attribute ppmattributetype="AT ID">
<value>This is the second end event</value>
</attribute>
</objectattributes>
</attributemapping>

31



DATA IMPORT

3.2.3 Create fragment definitions in ARIS

To correctly import the data, is does not matter how the fragment definition file and the
mapping file have been created. Creating the fragment definition file with ARIS or the
mapping file with PPM Customizing Toolkit is easier than directly editing the XML files.
The process fragment definitions are modeled as EPCs. A special ARIS method filter is

available for modeling. Often, the overall process to be analyzed by PPM is already modeled
using ARIS and can be used as a basis for the creating the fragments.

The EPCs for the process fragment definitions can also be modeled directly. However, in
practice the creation of an overall process has proved to be more effective for reasons of
clarity.

3.2.3.1 Modeling the overall process

First of all, the entire process to be monitored by PPM is modeled as an EPC in the application

system using the real activity flow. When creating the process, ensure that all system events

occurring are modeled in the EPC as events of a preceding function. Organizational units
should be specified at the functions.

For each overall process, create a separate group with a sub-group for the process fragment

definitions. Model an EPC for the overall process and a further EPC for each fragment in the
sub-group.

= ppm
@ﬁﬂ Uszers
(4] Font Formats
&) Languages
[P Tasks
[E8) Improvements
=] Main group
=] Order processing
=] fragments
Irvoice created
Order created
& Overall process
=] Process 2
=] fragments

fragrment 1
fragment 2
fragment 3

& Owerall process

32



DATA IMPORT

= A process begins with an event and ends with at least one event.
= Events may not precede branching OR and XOR rules.

= Specify the ARIS attributes Name and Identifier for all events and functions. When the
ARIS report is executed, the name is transferred to the fragment definition as the
language-specific PPM attribute AT_OBJINAME, and the identifier as the
language-independent PPM attribute AT_OBJNAME_INTERN.

First of all, generate a model assignment for all functions of the overall process in the group,
which is to contain the fragment definition. The identifier of the assigned model (process
fragment definition) specifies the name of the fragment definition. Next copy all events,
which adjoin a function in the procedural logic, into the model which is assigned to the
function.

Observe the following guidelines when modeling the fragments, regardless of whether you
are using an overall process or creating the fragments without an overall process.

Use the special PPM method filter FragmentXML_ARISToolSet_Filter.amc from the
directory <PPM installation
directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-clie
nt-run-prod-<version>-runnable.zip\ppm\ctk\ARIS. This limits the number of modeling
elements to the permissible object and connection types and thus makes modeling easier.

» Each process fragment must be modeled in a separate model of the EPC type. The
identifier of the model is transferred to the XML fragment definition file as the graph id
and specifies the name of the process fragment.

If you are using an overall process, when modeling the fragments generate occurrence copies
of the objects in the overall process.

=  Avoid cyclic process paths (loops). A fragment definition that contains cycles is identified
and ignored by the model report and a corresponding message is displayed in the ARIS
output window.

= All objects (events, functions, rules) in the fragment model must have a unique identifier.
This is transferred to PPM as the language-independent attribute
AT_OBINAME_INTERN.

33



DATA IMPORT

= Organizational units do not need to be modeled. They are ignored when generating the
fragment definition file using ARIS Report. Organizational units are dynamically assigned
to the corresponding functions by the attribute mapping (orgunit XML element - see
Organizational units (page 29)).

You can also specify free attributes for all objects and connections. These are written to the
corresponding objects or connections in the fragment definition file as fixed PPM
attribute/value combinations of the TEXT type. The list must be specified in ascending order
starting with User attribute text 1 and is evaluated as far as the first non-specified attribute.
Format: <Attribute key>#<Attribute value>. The separator # must not appear in the
attribute key or in the attribute value.

Example

For the New customer order to be created event, the following free attributes are specified:

|| Evert - Attributes Mew customer order
4 Free attributes to be created
[Englisch (USA)]

User aftribute Text 1 AT_PLANT_NAME#Duesseldorf
User attribute Text 2 AT _PLANT _IC#00123

User attribute Text 3 AT _CUST_ID#486777

User affribute Text 4 AT CUST _NAME#&vayer

User atiribute Text 5

User atfribute Text 6 AT_ORD_NUM#I23655

User attribute Text 7 :
User aftribute Texdt 8 AT_DIVISION_NAME#HIFI-Video
User attribute Text 4 -

In the file extract below from the fragment definition file created, the transferred free
attributes are shown in bold.

<node id="EVT_NEWCUSTORD2BE_CREATED" type="0T EVT">
<attribute type="AT OBJNAME">New customer order to be
created</attribute>
<attribute
type="AT_OBJNAME_INTERN">EVT_NEWCUSTORDZBE_CREATED</attribute>
<attribute type="AT PLANT NAME">Duesseldorf</attribute>
<attribute type="AT PLANT ID">00123</attribute>
<attribute type="AT CUST ID">456777</attribute>
<attribute type="AT CUST NAME">Mayer</attribute>
</node>

= The following ARIS connection types are included in report evaluation and transferred to
the CXN_FOLLOWS PPM connection type:

34



DATA IMPORT

Source object Target object ARIS connection type
Event Function activates

Event Rule is evaluated by
Function Event creates

Function Rule leads to

Function Function is predecessor of
Rule Event leads to

Rule Function activates

Rule Rule links

The illustration below shows a properly modeled process fragment with additional free

attributes specified for objects and a connection:

1 Bl « Alrbudad
_ 4 Free stnbubss

Hew
customar order
tobe
ereated

v

customer onder
o b

crealed

Ulger afribute Tesd 1

AT_PLANT_NAME#Duesseldor

Used afribile Test 2

AT PLANT 1000123

User afribule Test 3

AT _CUST IDSSETTT

User afribule Text 4

AT CUST MAMEWMMayes

' e ARG TEA N AT_CUST_IDSSSE777
Uiser altribube Tesd 2 AT CUST MaME#dayer

’ L e R L FEIFE]

ARIS Report generates the following fragment definition file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE graphlist SYSTEM "graph.dtd">

<graphlist>
<graph 1i1d="FRG NEWCUST ORD">

<node id="EVT_NEWCUSTORD2BE_CREATED" type="0T EVT">
<attribute type="AT OBJNAME">New customer order to be

created</attribute>
<attribute

type="AT OBJNAME INTERN ">EVT_NEWCUSTORDZBE_CREATED</attribute>
<attribute type="AT PLANT NAME">Duesseldorf</attribute>

35



DATA IMPORT

<attribute type="AT PLANT ID">00123</attribute>
<attribute type="AT CUST ID">456777</attribute>
<attribute type="AT CUST NAME">Mayer</attribute>
</node>
<node 1id="FCT_ CREATE NEWCUSTORD" type="OT FUNC">
<attribute type="AT OBJNAME">Create new customer order</attribute>
<attribute
type="AT_OBJNAME_INTERN">FCT_CREATE_NEWCUSTORD</attribute>
</node>
<node id="OT_RULE_AND" type="0T RULEAND">
<attribute type="AT OBJNAME INTERN">OT RULE AND</attribute>
<attribute type="AT SAP ID">455455</attribute>
</node>
<node id="FCT_ REC_NEWCUSTDAT" type="OT FUNC">
<attribute type="AT OBJNAME">Enter new customer data</attribute>
<attribute type="AT_OBJNAME_INTERN">FCT_REC_NEWCUSTDAT</attribute>
<attribute type="AT CUST ID">456777</attribute>
<attribute type="AT CUST NAME">Mayer</attribute>
</node>
<node 1id="OT RULE AND" type="OT RULEAND">
<attribute type="AT OBJNAME INTERN">OT RULE AND</attribute>
</node>
<node 1id="EVT NEWCUSTORD CREATED" type="OT EVT">
<attribute type="AT OBJNAME">New customer order created</attribute>
<attribute
type="AT_OBJNAME_INTERN">EVT_NEWCUSTORD_CREATED</attribute>
</node>
<edge type="CXN FOLLOWS" source="FCT REC NEWCUSTDAT"
target="0T RULE AND">
<attribute type="AT ID">123123</attribute>
</edge>
<edge type="CXN FOLLOWS" source="EVT NEWCUSTORDZBE CREATED"
target="OT RULE AND"/>
<edge type="CXN FOLLOWS" source="OT RULE AND"
target="FCT_REC_NEWCUSTDAT"/>
<edge type="CXN FOLLOWS" source="OT RULE AND"
target="EVT_NEWCUSTORD_CREATED"/>
<edge type="CXN FOLLOWS" source="FCT CREATE NEWCUSTORD"
target="0T RULE AND"/>
<edge type="CXN FOLLOWS" source="OT RULE AND"
target="FCT_CREATE_NEWCUSTORD"/>
</graph>
</graphlist>

OVERVIEW OF PROCESS FRAGMENT MODELING GUIDELINES

ARIS element ARIS attribute PPM fragment definition
EPC Name graph id of the definition
(fragment graph created

model)

Function Name AT_OBJINAME

36



DATA IMPORT

ARIS element

Event

Rule

Free attributes

3.2.3.3

ARIS attribute PPM fragment definition

Identifier AT_OBJINAME_INTERN
Name AT_OBJINAME

Identifier AT_OBJINAME_INTERN
Identifier AT_OBJINAME_INTERN

User attribute text <x>

x = Integer from 1 - 37

PPM attribute of TEXT type
including value for objects
or connections)

Format of system event file

The system event file contains the actual instance information about the actual course of the

processes. An extract from the XML file for the above example could look like this:

<?xml version="1.0" encoding="IS0-8859-1"7?>

<!DOCTYPE eventlist SYSTEM

<eventlist>

<event>
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute

</event>

<event>
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute

</event>

</eventlist>

"event.dtd">

type="PPM EVENT ID">A-Nr 4711</attribute>
type="PPM_EVENT_NAME">AUFTRAG_ANGELEGT</attribute>
type="AUFTRAGNR">4711</attribute>
type="AUFTRAGART">Rush order</attribute>
type="START TIME">11.11.2002 11:11:11</attribute>
type="PPM ORG NAME">Mr Miller</attribute>
type="PPM ORG NUM">1</attribute>

type="PPM EVENT ID">A-Nr 4711</attribute>

type="PPM EVENT NAME">RECHNUNG ERSTELLT</attribute>
type="AUFTRAGNR">4711</attribute>
type="AUFTRAGART">Rush order</attribute>
type="START TIME">12.11.2002 14:21:15</attribute>
type="PPM ORG NAME">Ms. Smith</attribute>
type="PPM ORG NUM">1</attribute>

37



DATA IMPORT

The format of the XML output file is specified by the DTD for PPM system event format:

CIELEMENT sventlist (metadata?; attribute®;
VRT3

>

£|ELEMENT avent ((attributs | orgl™)>
CIATTLIST avent
id NMTOREM #IMPLIED
LTET NHTOREN  SIHPLIED>

D

<1 BLEMENT org (BPCDATA) >
<IATTLIST org nus MHTOKEN FIMPLIELC

<IELEMENT attribute (#PCDATA)Z
“IAITLIET attribute typs NMTOKEN WREQUIRELC

Thee XML il Conbisns 8 RS0 of SOURCH SyElem
avents. You can specily global attnbutes that ane
valid for each swent elomeant

Opsonally, you Can spatty dats formals for
afomanc altnbide idenshicabon (Mmetadata
)

A SOUNCE SySlem évend miush hivi a1 ket oné
aEnbdte

Compatibility with prévious versions: A source
SYSIM WO CAN hand OFQaniZatcnal wnils and
b pd@nddied by &n 1D and & name

An crganizabonal uret 15 generated dynamicaly
at the process inslance fragment (compatibility
WAL [PrE OUS VErssons)

An atiribute has a bype

The id and name XML attributes of the event XML element and the org XML element enable

you to continue using system event files generated for PPM versions 1.x and 2.x with no

changes.

From PPM version 3.0 they are replaced by the PPM_EVENT_ID and PPM_EVENT_NAME

system event attributes and by the orgunit XML element.

3.2.3.4 Run the ARIS report

The ARIS report for generating the fragment definition XML file is designed as a group report.

38



DATA IMPORT

Copy the report script FragmentXML_TS700_PPM410_en.rsg located in the <PPM
installation
directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-run
-prod-<version>-runnable.zip\ppm\ctk\ARIS to the subdirectory script\report\en of your
ARIS installation (ARIS default directory for report scripts). To start the report, select the
Evaluate/Report pop-up menu for the group containing the fragment definitions.

-,

rRﬂplunrt Wizard - Select script

f« Default path
C" User-defined path Group-ariented report {474}

=) iStandard: Fragrment<tML_TS5700_PPMAT0 ern.reg

) Adrministration GroupModels.rsg
7)) Change Management Grouplbjects.rsg
) Intershp Tranzlation_Out rsg

) ProcessGeneratar

) SAP
) Vitna
I =ML

TitlefDescriptian
\ARIS Report

< Back Mext » Cancel Help

If you are using ARIS Architect import the script FragmentXML_BA700_PPM410.arx. For

importing, we recommend that you create a separate category called PPM. To run the report

use the entry FragmentXML.

After the report has run successfully, the XML fragment definition file can be found in the

selected output directory. The default directory is the script\report\out directory in the

ARIS installation. The file name is made up of the prefix Frag_ and a time stamp.

=  Ensure that the report runs with no warnings or error messages. The message Access to
an attribute that is not specified indicates that a required attribute has not been
entered, for example, the Identifier attribute. In this case, the XML files generated cannot

be used.

39



DATA IMPORT

» If you do not have access to an up-to-date report script for creating fragment definition
files, you must convert the FragmentXML.rsg script from the directory
\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-run-prod
-<version>-runnable.zip\ppm\ctk\ARIS of your PPM installation to a currently valid
form using ARIS Script Converter.

To generate the output file, the possible system events must be identified and named. The
example below uses the system events Order created and Invoice created.

% Order
created _
)VF‘ Invoice

created

'ﬂll?

F XML
output file

The occurrence of these system events is written to an XML output file with additional
information (for example, order number, processing times, base values for measure
calculation and the creation of dimensions).

The simple example below is intended to highlight the import in system event format

described.

To import the output files, the fragment definition file frag.xml and the mapping file map.xml
are created:

Fragment definitions in the file frag.xml:

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE graphlist SYSTEM "Graph.dtd">
<graphlist>
<graph id="FRG_ORD CREATED">
<node id="EVT ORD TOBECREATED" type="OT EVT">
<attribute type="AT OBJNAME">Customer order to be created</attribute>
<attribute type="AT_OBJNAME_INTERN">EVT_ORD_TOBECREATED</attribute>
</node>
<node id="FCT_ CREATE ORDER" type="OT_ FUNC">
<attribute type="AT OBJNAME">Create customer order</attribute>

40



DATA IMPORT

<attribute type="AT_OBJNAME_INTERN">FCT_CREATE_ORDER</attribute>
</node>
<node 1id="EVT ORD CREATED" type="OT EVTI">
<attribute type="AT OBJNAME">Customer order created</attribute>
<attribute type="AT_OBJNAME_INTERN">EVT_ORD_CREATED</attribute>
</node>
<edge type="CXN FOLLOWS" source="EVT ORD TOBECREATED"
target="FCT_CREATE ORDER"/>
<edge type="CXN FOLLOWS" source="FCT CREATE ORDER"
target="EVT ORD CREATED"/>
</graph>
<graph 1d="FRG INVOICED">
<node id="EVT_TOBE_INVOICED" type="0T EVT">
<attribute type="AT OBJNAME">Invoice to be created</attribute>
<attribute type="AT_OBJNAME_INTERN">EVT_TOBE_INVOICED</attribute>
</node>
<node 1id="FCT INVOICE" type="OT FUNC">
<attribute type="AT OBJNAME">Create invoice</attribute>
<attribute type="AT OBJNAME INTERN">FCT INVOICE</attribute>
</node>
<node 1id="EVT INVOICED" type="OT EVT">
<attribute type="AT OBJNAME">Invoice created</attribute>
<attribute type="AT OBJNAME INTERN">EVT INVOICED</attribute>
</node>
<edge type="CXN FOLLOWS" source="EVT TOBE INVOICED"
target="FCT_ INVOICE"/>
<edge type="CXN FOLLOWS" source="FCT INVOICE" target="EVT INVOICED"/>
</graph>
</graphlist>

Mapping definitions in the file map.xml:

<?xml version="1.0" encoding="IS0-8859-1"7?>
<!DOCTYPE eventmapping SYSTEM "eventmapping.dtd">
<eventmapping>
<processfragmentmapping>
<processfragment graphid="FRG_ORD CREATED">
<condition eventattributetype="PPM EVENT NAME">
<value>FRG_ORD_ CREATED</value>
</condition>
</processfragment>
<processfragment graphid="FRG INVOICED">
<condition eventattributetype="PPM EVENT NAME">
<Value>FRG_INVOICED</Value>
</condition>
</processfragment>
</processfragmentmapping>
<attributemapping>
<objectattributes objectname="EVT ORD TOBECREATED"
graphid="FRG_ORD CREATED">
<attribute ppmattributetype="AT MERGE KEY 1">
<eventattributetype>EVT PRED</eventattributetype>
</attribute>
</objectattributes>
<objectattributes objectname="FCT CREATE ORDER"
graphid="FRG ORD CREATED">

41



DATA IMPORT

<orgunit eventattributetype="PPM ORG NAME"/>
<attribute ppmattributetype="AT MERGE KEY 2">
<eventattributetype>START TIME</eventattributetype>
</attribute>
<attribute ppmattributetype="AT KI FBZ">
<eventattributetype>PROCESSINGTIME</eventattributetype>
</attribute>
<attribute ppmattributetype="AT SAPCLIENT">
<eventattributetype>KUNDENNR</eventattributetype>
</attribute>
<attribute ppmattributetype="AT SAP BSTYP">
<eventattributetype>AUFTRAGAT</eventattributetype>
</attribute>
</objectattributes>
<objectattributes objectname="EVT ORD CREATED"
graphid="FRG ORD CREATED">
<attribute ppmattributetype="AT ID">
<eventattributetype>AUFTRAGNR</eventattributetype>
</attribute>
<attribute ppmattributetype="AT SAPCLIENT">
<eventattributetype>KUNDENNR</eventattributetype>
</attribute>
<attribute ppmattributetype="AT MERGE KEY 1">
<eventattributetype>EVT NR</eventattributetype>
</attribute>
</objectattributes>
<objectattributes objectname="EVT TOBE INVOICED"
graphid="FRG INVOICED">
<attribute ppmattributetype="AT MERGE KEY 1">
<eventattributetype>EVT PRED</eventattributetype>
</attribute>
<attribute ppmattributetype="AT ID">
<eventattributetype>AUFTRAGNR</eventattributetype>
</attribute>
</objectattributes>
<objectattributes objectname="FCT INVOICE" graphid="FRG INVOICED">
<orgunit eventattributetype="PPM ORG NAME"/>
<attribute ppmattributetype="AT MERGE KEY 2">
<eventattributetype>START TIME</eventattributetype>
</attribute>
<attribute ppmattributetype="AT KI FBZ">
<eventattributetype>PROCESSINGTIME</eventattributetype>
</attribute>
</objectattributes>
<objectattributes objectname="EVT INVOICED" graphid="FRG INVOICED">
<attribute ppmattributetype="AT ID">
<eventattributetype>AUFTRAGNR</eventattributetype>
</attribute>
<attribute ppmattributetype="AT SAPCLIENT">
<eventattributetype>KUNDENNR</eventattributetype>
</attribute>
<attribute ppmattributetype="AT MERGE KEY 1">
<eventattributetype>EVT NR</eventattributetype>
</attribute>
</objectattributes>
</attributemapping>

42



DATA IMPORT

</eventmapping>

Extracting data from the application system has created the XML output file events.xmil:

<?xml version="1.0" encoding="IS0-8859-1"7?>
<!DOCTYPE eventlist SYSTEM "event.dtd">

<eventlist>

<event>
<attribute type="EVT PRED">0</attribute>
<attribute type="PPM_EVENT_ID">47ll</attribute>
<attribute type="PPM EVENT NAME">FRG ORD CREATED</attribute>
<attribute type="PPM ORG NAME">Mr Miller</attribute>
<attribute type="AUFTRAGNR">4711</attribute>
<attribute type="AUFTRAGART">Rush order</attribute>
<attribute type="START TIME">11.11.2002 11:11:11</attribute>
<attribute type="KUNDENNR">5711</attribute>
<attribute type="PROCESSINGTIME">7 MINUTE</attribute>
<attribute type="EVT NR">1</attribute>

</event>

<event>
<attribute type="EVT PRED">1</attribute>
<attribute type="PPM EVENT ID">4711</attribute>
<attribute type="PPM_EVENT_NAME">FRG_INVOICED</attribute>
<attribute type="PPM ORG NAME">Ms. Smith</attribute>
<attribute type="AUFTRAGNR">4711</attribute>
<attribute type="KUNDENNR">5711</attribute>
<attribute type="START TIME">12.11.2002 14:21:15</attribute>
<attribute type="PROCESSINGTIME">14 MINUTE</attribute>
<attribute type="EVT NR">2</attribute>

</event>

</eventlist>

Executing the command line

runxmlimport -user system -password manager -f frag.xml -mmap.xml -i event.xml
generates process instance fragments in the PPM database. The listing below in PPM graph
format illustrates the process instance fragments generated in the PPM database. In the
listing, the process instance fragment information, which has been added to the fragment
definition, is written in bold:
<?xml version='1l.0' encoding='ISO-8859-1"7?>
<!DOCTYPE graphlist SYSTEM "graph.dtd">
<graphlist>

<graph i1d="FRG ORD CREATED" xml:lang="en">

<node id="FRG_ORD CREATED-EVT ORD TOBECREATED-1-8835472025300230616"
type="0T EVT">

<attribute type="AT OBJNAME">Customer order to be created</attribute>
<attribute type="AT_OBJNAME_INTERN">EVT_ORD_TOBECREATED</attribute>
<attribute type="AT EPK FRAGMENT ID">FRG ORD CREATED</attribute>
<attribute

type="AT_INTERNAL_OBJECT_KEY">EVT_ORD_TOBECREATEDO</attribute>
<attribute type="AT MERGE KEY 1">0</attribute>
<attribute type="AT ORIG EPK ID">1</attribute>
</node>
<node id="FRG_ORD_CREATED—FCT_CREATE_ORDER—2—8344758599463564840"

43



DATA IMPORT

type="0T FUNC">
<attribute type="AT OBJNAME">Create customer order</attribute>
<attribute type="AT_OBJNAME_INTERN">FCT_CREATE_ORDER</attribute>
<attribute type="AT EPK FRAGMENT ID">FRG ORD CREATED</attribute>
<attribute type="AT INTERNAL OBJECT KEY">
FCT CREATE ORDER11.11.200211:11:11</attribute>

<attribute type="AT KI FBZ">7 MINUTE</attribute>
<attribute type="AT MERGE KEY 2">11.11.2002 11:11:11</attribute>
<attribute type="AT ORIG EPK ID">1</attribute>
<attribute type="AT SAPCLIENT">5711</attribute>

</node>

<node id="FRG_ORD CREATED-EVT ORD CREATED-3-7299716715746582786"

type="0T EVT">
<attribute type="AT OBJNAME">Customer order created</attribute>
<attribute type="AT_OBJNAME_INTERN">EVT_ORD_CREATED</attribute>
<attribute type="AT EPK FRAGMENT ID">FRG ORD CREATED</attribute>
<attribute type="AT ID">4711</attribute>
<attribute
type="AT INTERNAL OBJECT KEY">EVT ORD CREATEDl</attribute>

<attribute type="AT MERGE KEY 1">1</attribute>
<attribute type="AT ORIG EPK ID">1</attribute>
<attribute type="AT SAPCLIENT">5711</attribute>

</node>

<node id="FRG ORD CREATED-1--2--7661491465378853387" type="OT ORG">
<attribute type="AT INTERNAL OBJECT KEY">

FRG ORD CREATED-1--2-7661491465378853387</attribute>

<attribute type="AT OBJNAME">Mr Miller</attribute>

</node>

<edge type="CXN FOLLOWS"

source="FRG_ORD CREATED-EVT ORD TOBECREATED-1-8835472025300230616"
target="FRG ORD CREATED-FCT CREATE ORDER-2-8344758599463564840"

/>
<edge type="CXN FOLLOWS"
source="FRG_ORD CREATED-FCT CREATE ORDER-2-8344758599463564840"
target="FRG ORD CREATED-EVT ORD CREATED-3-7299716715746582786"
/>

<edge type="CXN UNDIRECTED"
source="FRG_ORD CREATED-1--2-7661491465378853387"

target="FRG_ORD CREATED-FCT CREATE ORDER-2-8344758599463564840">
<attribute type="AT COUNT PROCESSINGS">1</attribute>
</edge>
</graph>
<graph 1d="FRG_INVOICED" xml:lang="en">
<node id="FRG_INVOICED-EVT TOBE INVOICED-1-246376083169224336"
type="0T EVT">
<attribute type="AT OBJNAME">Invoice to be created</attribute>
<attribute type="AT_OBJNAME_INTERN">EVT_TOBE_INVOICED</attribute>
<attribute type="AT EPK FRAGMENT ID">FRG INVOICED</attribute>
<attribute type="AT ID">4711</attribute>
<attribute
type="AT INTERNAL OBJECT KEY">EVT TOBE INVOICEDl</attribute>
<attribute type="AT MERGE KEY 1">1</attribute>
<attribute type="AT ORIG EPK ID">2</attribute>
</node>

44



DATA IMPORT

<node id="FRG_INVOICED-FCT INVOICE-2--1285282699037363371"
type="0T FUNC">

<attribute
<attribute
<attribute
<attribute

<attribute
<attribute
<attribute

</node>
<node id="FRG_INVOICED—EVT_INVOICED—3—1541227247726154405"
type="0T EVT">

<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute
<attribute

</node>
<node 1id="FRG INVOICED-1--2--8231301810541650135" type="OT ORG">

<attribute

<attribute

</node>
<edge type="CXN FOLLOWS"

source="FRG_INVOICED-EVT TOBE INVOICED-1-246376083169224336"
target="FRG_INVOICED-FCT INVOICE-2--1285282699037363371" />

<edge

<edge

type="AT OBJNAME">Create invoice</attribute>
type="AT_OBJNAME_INTERN">FCT_INVOICE</attribute>
type="AT EPK_ FRAGMENT ID">FRG_INVOICED</attribute>
type="AT_INTERNAL_OBJECT_KEY">FCT_INVOICE12.11.2002

14:21:15</attribute>
type="AT KI FBZ">14 MINUTE</attribute>
type="AT MERGE KEY 2">12.11.2002 14:21:15</attribute>
type="AT ORIG EPK ID">2</attribute>

type="AT OBJNAME">Invoice created</attribute>
type="AT_OBJNAME_INTERN">EVT_INVOICED</attribute>

type="AT EPK_FRAGMENT ID">FRG_INVOICED</attribute>
type="AT ID">4711</attribute>

type="AT INTERNAL OBJECT KEY">EVT INVOICED2</attribute>
type="AT MERGE KEY 1">2</attribute>

type="AT ORIG EPK ID">2</attribute>

type="AT SAPCLIENT">5711</attribute>

type="AT_INTERNAL_OBJECT_KEY">FRG_INVOICED—1——2—
8231301810541650135</attribute>
type="AT OBJNAME">Ms. Smith</attribute>

type="CXN FOLLOWS"

source="FRG_INVOICED-FCT INVOICE-2-1285282699037363371"
target="FRG_INVOICED-EVT INVOICED-3-1541227247726154405" />

type="CXN UNDIRECTED"

source="FRG_ INVOICED-1--2--8231301810541650135"
target="FRG INVOICED-FCT INVOICE-2--1285282699037363371">

<attribute

</edge>
</graph>
</graphlist>

3.3

type="AT COUNT PROCESSINGS">1</attribute>

Data formats

This chapter describes the formats of the source system data, which are expected in the form

of attribute values in the XML output file.

Attribute mapping assigns a PPM attribute type to the source system attributes. Source

system attributes are pure carriers of information in the form of a string. The data type of the

PPM attribute specifies how the text of the source system attribute will be interpreted.

45



DATA IMPORT

NUMERICAL DATA

Numerical data is essentially interpreted as information in the decimal system. Floating point
numbers use full stops as separators between places before and after the decimal point,
regardless of the setting of the operating system.

Attribute values are imported with a unit, for example, 57 USD. If no unit is specified, the base
unit of the data type on which the PPM attribute type is based will be assumed.

Percentages are either specified as 58 PERCENT or as a factor in the form of

0.58 VALUE_ONLY.

TIME-BASED DATA

PPM differentiates between three categories of time-based reference data:

Date:

The day of the calendar is specified, for example, 26.06.2003.

Time:

The time of day is specified in 24-hour format, for example, 14:29.

Time stamp:

The specification of a time stamp is made up of date and time information, for
example, 26.06.2003 14:29.

For parsing of the data string, the format string specified in the file
AdapterConfig_settings.properties in the client configuration folder for the relevant
category is used.

As an extension to the Java standard (see Definition of attribute mapping (page 21),

Transformations section), PPM provides the format string Q.yyyy. which enables time
values to be imported as a quarter, for example, 2.2003 for the second quarter of 2003.

3.3.1 Special characters in XML documents

Special characters such as &, >, < and " are control characters (meta characters) of the XML
document. If these characters directly occur in the source data, misinterpretations may occur
while importing the XML file. To be able to use these characters in the reference data, you
need to replace them by the following entities (strings):

46



DATA IMPORT

Characters Entity Characters Entity
& &amp:; " &quot;
< &lt; > &gt;

The table below shows the representation of special characters in XML files:

Characters Entity Characters Entity Characters Entity
i &iexcl; » &raquo; £ &pound;
¥ &yen; | &brvbar: § &sect:
© &copy: : &ordf; « &laquo;
@ &reg; ° &deg; * &plusmn;
1 &sup1; 2 &sup2; 3 &sup3;
Ya &frac14; V2 &frac12; Ya &frac34;
A &Auml; 0 &0uml; U &Uuml;
a &auml; ) &ouml; a &uuml;
B &szlig; X &times; + &divide
E &Egrave; E &Eacute; E &Ecirc;
E &Euml; e &Egrave; é &Eacute;
é &Ecirc; é &Euml; o &Oslach;

You can use any character by indicating its font code. To do this, specify the ASCII code of
the relevant character in decimal notation as follows: &#<Decimal code of character>;.
For example, to use the @ character, enter &#64; in the XML document.

Importing into the PPM system involves importing the fragment instance data contained in
the XML output file and generating process instance fragments.

Importing into the PPM system involves mapping the instance data for the system events
contained in the XML output file to the process fragment definitions in the specified fragment

47



DATA IMPORT

file and generating process instance fragments. The attributes specified in the mapping file
are then copied to the process instance fragments generated.

Regardless of the format used to import the fragment instance, before a process instance
fragment is finally saved in the PPM database, process keys (see Merge process fragments
(page 95)) are calculated to enable the process instance fragments to be merged into a
process instance.

During the import, relevant status messages are output on the command prompt and

optionally in the specified log file.

3.4.1 Extending the attribute configuration

You can automatically identify attributes contained in the XML import files that are not known
in the PPM system. Optionally, you can assign a data type to the new attributes added and
automatically transfer them to the attribute configuration of your PPM client.

Automatic attribute identification supports both data import formats.

You can use the following options to enable automatic extension of the attribute
configuration:

COMMAND LINE ARGUMENTS
When calling up runxmlimport, specify the additional arguments -autoextendattributes
and -extractattributes in the command line.

Specifying these arguments has the following effect when importing:

Argument Effect

-extractattributes <File name> Unknown attributes are saved in the
specified file. No XML fragment files
are imported.

48



DATA IMPORT

Argument Effect

-autoextendattributes Unknown attributes are transferred
to the attribute configuration. If the
automapping option is enabled, the
attribute mapping configuration is
extended accordingly.

The XML fragment data is then
imported.

Both arguments are specified  The actions described under
-autoextendattributes and
-extractattributes are performed

consecutively.

Assign the value true to the autoextendattributes attribute of the attributesettings XML
element in the datasource file used.

Example

<?xml version="1.0" encoding="IS0-8859-1"7?>
<!DOCTYPE datasource SYSTEM "datasource.dtd">

<datasource name="Events" type="EVENT">
<attributesettings autoextendattributes="true">

</attributesettings>
</datasource>

Certain attributes can be excluded from automatic attribute identification using pattern
identification. To do this, specify the name pattern of the attributes you want to exclude from
automatic extension in the excludepattern XML element. You can use the placeholders ?
(any single character) and * (any set of characters).

Example

In the example below, all system event attributes whose name begins with TEST or that have
the name USER are excluded from automatic attribute identification.

<?xml version="1.0" encoding="IS0-8859-1"7?>
<!DOCTYPE datasource SYSTEM "datasource.dtd">

<datasource name="Events" type="EVENT">

<attributesettings autoextendattributes="true">

49



DATA IMPORT

<excludepatterns>
<excludepattern>TEST*</excludepattern>
<excludepattern>USER</excludepattern>
</excludepatterns>

</attributesettings>
</datasource>

3.4.1.1 Specify the data type of unknown attributes

You can specify the data type to be assigned to an unknown attribute in the following ways:
= Meta data specified in the system event file (only for event import format)

» Pattern identification in the attribute name, for example, TEXT__*

= Attribute value parsing

The sequence shown corresponds to the prioritization of the automatic data type
identification.

META DATA

In the system event files to be imported, you can specify a PPM data type and, optionally, a
format (for example, to identify time stamps) and attribute description for each attribute of a
system event. Attributes that are not yet known in the PPM system are automatically
generated with the specified data type.

Meta data is specified in the metadata XML element:

<eventlist>
<metadata>
<attr desc type="...">
<ppmdatatype>...</ppmdatatype>
<format>...</format>
<description>...</description>
</attr desc>
</metadata>
<event>

</event>

</eventlist>
The XML tags for the metadata XML element have the following meaning:

50



DATA IMPORT

XML tag Description

attr_desc Individual meta data definition of a system event
attribute. Multiple definitions can be specified.

type Name of the system event attribute

ppmdatatype PPM data type to be assigned to the PPM attribute

generated.
format Format to be used for parsing the attribute value. If
(optional) you have also enabled automatic mapping, the format

is also used to transform the value into PPM time
format.

description Description of the PPM attribute generated. The

(optional) specified description is transferred in the attribute
configuration in the default language of the PPM
client.

Example

<eventlist>
<metadata>
<attr desc type="SWWWIHEAD-WI ID">
<ppmdatatype>TEXT</ppmdatatype>
<description>Work item ID</description>
</attr desc>
<attr desc type="SWWWIRET-WI AED">
<ppmdatatype>DAY</ppmdatatype>
<format>yyyyMMdd</format>
<description>End date of work item</description>
</attr desc>
</metadata>

<event>
<attribute type="SWWWIHEAD—WI_ID">OO0000525723</attribute>
<attribute type="SWWWIRET—WI_AED">20011211</attribute>
</event>
</eventlist>

The extractors available for PPM (PPM Process Extractor SAP-2-PPM and PPM Process
Extractor JDBC-2-PPM) automatically generate the metadata XML element, allowing you to
directly import the system event files generated without doing anything. Attributes that are
not yet known in the PPM system are automatically generated with the correct data type.

51



DATA IMPORT

The datatypekeydetectionsettings XML element in the data source file can be used to
specify a list of patterns (datatypedetectionpattern XML elements) to be used for data type
assignment. The names of all new attributes identified are compared with the patterns. The
first pattern identified in the list specifies the data type of the attribute.

Example

The following extract from the data source file configures the following naming pattern to
identify the data type of new attributes identified:

= A system event whose name begins with L_ or ends in L is assigned the data type LONG.

= A system event whose name begins and ends in D is assigned the data type DOUBLE.

<attributesettings autoextendattributes="true">
<datatypedetectionsettings>
<datatypekeydetectionsettings >
<datatypedetectionpattern datatype="LONG”>*L
</datatypedetectionpattern>
<datatypedetectionpattern datatype="LONG”>L *
</datatypedetectionpattern>
<datatypedetectionpattern datatype="”"DOUBLE”>D*D
</datatypedetectionpattern>
</datatypekeydetectionsettings>
</datatypedetectionsettings>
</attributesettings>

If pattern identification is unable to identify a data type, an attempt is made to identify the
data type based on the value of the attribute. The following data types are identified:
BOOLEAN, LONG, DOUBLE, TIME, TIMEOFDAY, DAY, and TEXT. The enumeration
corresponds to the priority for data type identification.

The attribute values true and false are assigned to the BOOLEAN data type regardless of
capitalization. Other values, for example, 0 and 1 are not identified as BOOLEAN.

If the BOOLEAN data type is not identified, the system attempts to identify numerical values.
When identifying numerical data types, a distinction is made between integers and floating
point numbers. In the doubleonly attribute for the datatypevaluedetectionsettings XML
element, you can use the value TRUE (default value) to specify that integer attribute values
should be assigned to the data type DOUBLE.

52



DATA IMPORT

Identification of the DOUBLE data type does not require you to specify a thousands
separator. The point (period) is the only decimal separator identified.

If no numerical data type is identified, the system attempts to identify the attribute value as a
time stamp (TIME), time of day (TIMEOFDAY), or date (DAY). The enumeration corresponds to
the priority for data type identification. For each of the data types time stamp, time of day
and date, you can optionally use the timeformat, timeofdayformat and dayformat XML
elements to specify format strings describing the formats of the specified attribute values. If
you do not specify format strings, the following default formats apply:

Data type Default format

TIME dd.MM.yyyy HH:mm:ss
TIMEOFDAY MM/dd/yyyy

DAY HH:mm:ss

If no data type has been identified so far by parsing the attribute value, the attribute is
assigned the data type TEXT.

You can use the numberofvaluestocheck attribute for the
datatypevaluedetectionsettings XML element to specify how often the data type is to be
retrieved by parsing the attribute value. If the XML attribute is not specified, the default value
of 100 is used. If different data types are identified for an attribute, the data type previously
identified is converted into a general data type. The following table applies:

Data type General data type
BOOLEAN TEXT

LONG DOUBLE, TEXT
DOUBLE TEXT

TIME TEXT

TIMEOFDAY TEXT

DAY TEXT

TEXT TEXT

53



DATA IMPORT

Example

The file extract below shows a complete configuration for automatic data type identification
by parsing the attribute value.

<attributesettings autoextendattributes="true">
<excludepatterns>
<excludepattern>TEST*</excludepattern>
<excludepattern>USER</excludepattern>
</excludepatterns>
<datatypedetectionsettings>
<datatypekeydetectionsettings>

<datatypedetectionpattern datatype = "LONG">LG *
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "LONG">*LONG*
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "LONG">* Ing
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "DOUBLE">DOUBLE *
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "DOUBLE">* dbl
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "DAY">DAY *
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "DAY">* day
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "TIMEOFDAY">TIMEOFDAY *
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "TIMEOFDAY">* tod
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "TIME">TIME *
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "TIME">* tm
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "TEXT">TEXT *
</datatypedetectionpattern>

<datatypedetectionpattern datatype = "TEXT">* txt

</datatypedetectionpattern>
</datatypekeydetectionsettings>
<datatypevaluedetectionsettings
doubleonly = "FALSE"
numberofvaluestocheck = "100">
<timeformat>dd.MM.yyyy HH:mm:ss</timeformat>
<timeofdayformat>HH:mm:ss</timeofdayformat>
<dayformat>dd.MM.yyyy</dayformat>
</datatypevaluedetectionsettings>
</datatypedetectionsettings>
<attributeprefix>AT </attributeprefix>
</attributesettings>

54



DATA IMPORT

If you are using event format to import, you can enable automatic mapping, that is, all
attributes of a system event are transferred to the specified object types in the assigned

fragment definition.

Extension of the mapping configuration is configured using attributes of the automapping

XML element.

XML attribute
nodetype

graphid

addmergeattribute
s
(optional)

If you have to specify automatic mapping extension for multiple object types or fragment

Description

determines the object type for which this
automapping is valid.

Valid values: OT_FUNC for functions, OT_EVT
for events and PROCESS for processes.

determines the fragment definition graph for
whose objects this automapping is valid. The
specified value corresponds to the id attribute of
the graph XML element in the fragment
definition.

For the object type PROCESS, determines
whether the attributes are added to the merge
configuration, which means that they will be
retained as process attributes when merging
instance fragments (value TRUE), or not (value
FALSE).

For the object types OT_FUNC and OT_EVT, this
entry is ignored. For the object type PROCESS,
you must specify addmergeattributes.

definition graphs, you can specify a separate automapping XML element for each object type

or fragment definition graph required. Automatic mapping takes account of the prefix
specified in the attributeprefix XML element, for example, AT_. If you have specified an

explicit mapping for particular attributes, this overwrites the attributes previously transferred

by automatic mapping.

55



DATA IMPORT

Example

In the file extract below, automatic mapping extension is configured for functions of the
fragment definition graph FRG_CATCH_ALL.

<?xml version="1.0" encoding="ISO-8859-1"7?>
<!DOCTYPE eventmapping SYSTEM "eventmapping.dtd">
<eventmapping>
<processfragmentmapping>
<!--FRG_CATCH ALL-->
<processfragment graphid="FRG CATCH ALL">

</processfragment>

</processfragmentmapping>
<attributemapping>

<automapping
nodetype="0T_ FUNC"
graphid="FRG CATCH ALL"
/>
<attributemapping>
</eventmapping>

3.4.3 Multi-valued system event attributes

If a system event attribute occurs several times in a system event, there is no guarantee that
the last value read will be transferred. To transfer all values for attributes that occur several
times in a system event, you can specify the multieventattributetype XML element instead
of the attribute XML element in the mapping configuration. All values of system event
attributes identified in this way are concatenated with a separator (semicolon by default). Use
the optional delimiter XML attribute to specify a separator other than the default.

Using multiple system event attribute values makes it easier to merge parallel process paths if
you write all merge keys for the preceding fragment to the system event file as
multieventattributetype attributes.

Example

System event file extract

<event>
<attribute type="EVENTTYP">Change customer order</attribute>
<attribute type="THIS KEY">3</attribute>
<attribute type="PREV KEY">1</attribute>
<attribute type="PREV KEY">2</attribute>
<attribute type="USER">Team A</attribute>
</event>

Mapping file extract

56



DATA IMPORT

<attributemapping>

<!-- Mapping Event Start BEGIN -->
<objectattributes objectname="EVT START" graphid="FRG CATCH ALL">
<attribute ppmattributetype="AT OBJNAME">
<eventattributetype>EVENTTYP</eventattributetype>
<value> to be done</value>
</attribute>
<attribute ppmattributetype="AT ID">
<eventattributetype>AT PRCNO</eventattributetype>
</attribute>
<!-- Mulivalue Mapping -->
<attribute ppmattributetype="AT KEY">
<multieventattributetype
delimiter=";">PREV KEY</multieventattributetype>
</attribute>

</objectattributes>

The AT_KEY attribute generated for the EVT_START event is assigned the value 1;2. If the
merge is configured accordingly, two merge keys will be generated for this event.

3.4.4 Direct import of process attributes

The attributes required to calculate measures and dimensions at process instance level are
normally copied to the process instance from objects in the imported fragment instances.
This operation can be configured using attribute copy rules or a corresponding calculation
rule in the Measure calculator.

Alternatively, you can directly import process instance attributes (graph format) or generate

them by mapping system event attributes to the fragment definition (event format).

To overwrite process attributes of existing process instances, you can directly import
fragment instances without objects and connections containing exclusively process

attributes (graph format) or generate them by mapping system event attributes to a fragment

definition with no objects (event format).

GRAPH FORMAT

Example

Graph without objects and connections

<graph id="FRG EMPTY">
<attribute type="AT ID">1</attribute>
<attribute type="AT SAP BELEGNR">Document 2</attribute>
<attribute type="AT SAPCLIENT">R3</attribute>

57



DATA IMPORT

</graph>

EVENT FORMAT

When using event format, the system event attributes are transferred to the instantiated
graphs in a fragment definition with no objects.

Example

Extract from fragment definition with no objects:

<graph id="FRG EMPTY">
<attribute type="AT ID">1</attribute>
</graph>

Extract from mapping rule:

<processattributes graphid="FRG EMPTY">
<attribute ppmattributetype="AT SAP BELEGNR">
<value>Document </value>
<eventattributetype>SAP BELEGNR</eventattributetype>
</attribute>
<attribute ppmattributetype="AT SAPCLIENT">
<eventattributetype>SAPCLIENT</eventattributetype>
</attribute>
</processattributes>

Example of merger_config.xml

<processmerge>
<mergeattributes>
<attribute key = "AT_SAP_BELEGNR"/>
<attribute key = "AT SAPCLIENT"/>
</mergeattributes>
</processmerge>



DATA IMPORT

In a scaled system, data is imported to the sub-server. All sub-servers must have an identical

configuration. The autoextendattributes and addmergeattributes options would change

the configuration of an individual sub-server and the uniform configuration of all sub-servers

would be lost. Therefore, using these two options is not possible in a scaled system.

If you still want to use the automatic extension of the attribute configuration, you need to

export the possible extensions for each sub-server and manually import these on the master

server, which can then distribute the extensions to all sub-servers in the system.

Before you import data with new attributes to the sub-server, perform the following steps:

1.

Identify new system event attributes and extract them using the -extractattributes

<File name> parameter in the xmlimport command line program.
Import the new attributes on the master server.

Identify new attributes that you want to be retained when merging process fragments
and extract these using the -extractmergeattributes <File name> parameter in the
xmlimport command line program.

Manually extend the merge configuration on the master server, as described in the Add

the merge attributes section below.

Perform an XML data import to the sub-server with the automapping option.

If you have specified automatic mapping extension for processes (<automapping

nodetype="PROCESS" ...), you can extract the new attributes added that are to be retained

when merging process fragments by specifying the -extractmergeattributes <File name>

parameter in the command line. No XML data is imported. The file generated contains only a

mergeattributes XML element with a list of all new attributes, and has the following

structure:

<?xml version="1.0" encoding="ISO-8859-1"?>
<mergeattributes>

<attribute key="..." />

</mergeattributes>

59



DATA IMPORT

Use the -export -merger <File name> parameter to export the merge configuration on the
master server. Edit the merge configuration by adding the attributes (attribute XML
elements for mergeattributes XML element) to all merge attributes from the exported
master server merge configuration previously exported for each sub-server using
-exctractmergeattributes <File name>.

Finally, use the -import -merger <File name> parameter to import the merge configuration
from the master server.

Example

Exported master server merge configuration

<?xml version="1.0" encoding="IS0-8859-1"7?>
<!DOCTYPE mergerconfig SYSTEM "mergerconfig.dtd">
<mergerconfig>
<mergehandling>
<processmerge>
<mergeattributes>
<attribute key = "AT SAPSYSTEM"/>
<attribute key = "AT_SAP_BELEGNR"/>
</mergeattributes>
</processmerge>
<eventmerge priority="1">
<mode>
<keymerge/>
</mode>
</eventmerge>
</mergehandling>
</mergerconfig>

Exported merge attributes for sub-server 1

<?xml version="1.0" encoding="IS0-8859-1"7?>
<mergeattributes>

<attribute key = "AT_SAPCLIENT"/>
</mergeattributes>

Exported merge attributes for sub-server 2

<?xml version="1.0" encoding="ISO-8859-1"7?>
<mergeattributes>
<attribute key="AT SAP BSTYP" />
<attribute key="AT SAP BSTYP" />
</mergeattributes>

Consolidated master server merge configuration

<?xml version="1.0" encoding="ISO-8859-1"7?>
<!DOCTYPE mergerconfig SYSTEM "mergerconfig.dtd">
<mergerconfig>
<mergehandling>
<processmerge>
<mergeattributes>
<attribute key = "AT_SAPSYSTEM"/>

60



DATA IMPORT

<attribute key = "AT_SAP_BELEGNR"/>
<!-- Merge attributes sub-server 1 -->

<attribute key = "AT SAPCLIENT"/>
<!-- Merge attributes sub-server 2 -->

<attribute key="AT SAP BSTYP" />
<attribute key="AT SAP BSTYP" />
</mergeattributes>
</processmerge>
<eventmerge priority="1">
<mode>
<keymerge/>
</mode>
</eventmerge>
</mergehandling>
</mergerconfig>

3.4.6 Archiving of XML import files

If you want to prevent XML import files already imported from being imported again next time,

you can specify that the imported files will be renamed or moved to a different directory.

The option of archiving import files is configured using the archive XML element in the data

source file used:

<?xml version="1.0" encoding="IS0O-8859-1"7?>
<!DOCTYPE datasource SYSTEM "datasource.dtd">

<datasource name="Events" type="EVENT">

<archive>
<directory>...</directory>
<prefix>...</prefix>
</archive>
</datasource>

XML element Description

directory Specifies the directory to which the imported XML
import files will be moved. Any directories in the
specified path that do not yet exist will be created
automatically.

prefix Specifies the prefix given to the name of the imported
XML import files.

61



DATA IMPORT

If you specify both XML attributes, evaluation of the directory attribute is given priority and
the prefix attribute is ignored.

3.5 runxmlimport command line program

XML import files are imported using the runxmlimport command line program. During an
import, process instance fragments are imported into the PPM system'’s internal buffer and
initially not processed further.

If an error occurs during the import operation, an error message appears on the console and

the return value of the program is not equal to O.

Calling up the program without parameters or with -h or =2 outputs the online help on the
console. The help describes all available options:

IMPORT PROCESS INSTANCES IN XML FORMAT

runxmlimport -user <user name> -password <password> [-client <name>]
[-datasource <file>]
[-datasourcelist <file>]
[-i <file1>[<file2>...]]
[-f <fragment file> -m <mapping file>]
[-extractattributes <attribute file>] [-autoextendattributes]
[-extractmergeattributes <mergeattribute file>]

[protocoloptions] [-language <ISO code>] [-version]

-user <user name> Name of the user
-password <password> User password
-client <name> Name of the client. If no client is

specified, the import process for the
default client is run.

-version Version number
-datasource <file> Data source to be used for the XML
import.

62



DATA IMPORT

-datasourcelist <file>

-i <file1> [<file2>...]

List of data sources to be used for the
XML import.

Import files. ZIP files are supported.

If the importis run in event format, -f and -m must be specified if no data source or data

source list have been specified.
[-f <fragment file>]
[-m <mapping file>]

[-extractattributes <attribute file>]

[~autoextendattributes]

[-extractmergeattributes <mergeattribute file>]

Fragment file
Mapping file

Generates an XML file with all
attribute types that occur in the input
file(s), but that have not been defined
yet.

Before XML import, all attribute types
are imported that occur in the input
file(s), but that have not been defined
yet.

Generates an extract of the merge
configuration file with all new
attributes that are to be retained as
process attributes when merging

fragment instances.

The protocoloptions option can consist of the following instructions:

-protocolfile <file name>
-information {yes|no|default}
-warning {yes|no|default}
-error {yes|no|default}

-language <ISO code>

Logging to file <file name>
Logging of information
Logging of warnings
Logging of errors

Log output language

63



DATA IMPORT

The version of the PPM software and the database schema are output on the console. Other

arguments are ignored.

Specify the user name and the password of the PPM user who is executing the import. The
user must have the Data import function privilege.

Specify the PPM client in whose database schema the imported process fragments are to be
saved. If you do not enter anything here, the default client (Default) is used.

Specify any number of files to be imported. The names are allowed to contain placeholders. ?
is a placeholder for a single character, * for any number of characters. The file name must not
begin with a minus sign.

Example: The argument -i <Path>\?ata*.xml reads all files in the <Path> directory with the
extension <.xml that begin with any character followed by the string <ata and then any other
string.

If the specified files are a ZIP archive, all XML files in the ZIP archive are read regardless of the
folder structure of the archive.

Specify the type of import. If you specify the -f and -m arguments, the PPM system event
format is used automatically. If you do not specify these arguments, graph format is used.

The XML elements data, fragments, and mapping indicated in the file specify the XML files
to be used and replace the =i, -f, and -m command line parameters. The format of the XML file
is described in the document type definition datasource.dtd. PPM Customizing Toolkit uses
this file for configuration and to extract data sources.

The file is located under <installation
directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-run
-prod-<version>-runnable.zip\ppm\dtd

The following examples illustrate the contents of a data source file for data import in graph
and system event format:

Data source file datasource.xml for graph format

64



DATA IMPORT

<?xml version="1.0" encoding="IS0-8859-1"7?>
<!DOCTYPE datasource SYSTEM "datasource.dtd">
<datasource name="Sales" type="GRAPH">
<description name="default description"
language="de">Demo-Datenbankinhalt</description>
<description name="default description"
language="en">Demo database content</description>

<data>C:\SoftwareAG\ppm\server\bin\work\data ppm\custom\umg en\datal\umgsa
les umg en.zip</data>

<eventattributetypes />
</datasource>

Data source file datasource.xml for event format

<?xml version="1.0" encoding="ISO-8859-1"7?>
<!DOCTYPE datasource SYSTEM "datasource.dtd">
<datasource name="CustomerService" type="EVENT">
<description name="default description"
language="de">Demo-Datenbankinhalt</description>
<description name="default description"
language="en">Demo database content</description>

<data>C:\SoftwareAG\ppm\server\bin\work\data ppm\custom\umg en\data\CS\cs
demodata.zip</data>

<fragments>C:\SoftwareAG\ppm\server\bin\work\data ppm\custom\umg en\xml\C
S\CustomerService Fragments.xml</fragments>

<mapping>C:\SoftwareAG\ppm\server\bin\work\data ppm\custom\umg en\xml\CS\
CustomerService Mapping.xml</mapping>

<eventattributetypes />
</datasource>

If you specify the parameter -datasource in the command line, the parameters =i, -f, and -m
are not considered.

For more detailed information on configuring data sources, refer to the technical reference
PPM Process Extractors.

-DATASOURCELIST <FILE NAME>

With the -datasourcelist argument, you can import multiple data sources simultaneously,
except for data sources of the GRAPH type. The import corresponds to multiple importing
using the -datasource argument.

See chapter Import multiple data sources (page 66).

-AUTOEXTENDATTRIBUTES

If you specify this switch in the command line, new attributes will be identified and the
attribute configuration in the PPM system extended accordingly. If you have enabled the
automapping option in the data source configuration used, new attributes identified will be
transferred to the specified objects in the fragment definition.

65



DATA IMPORT

Attributes contained in the XML import files that are not known in the PPM system are
identified and written to the specified file. The file generated is DTD-compatible and can be
imported using the runppmconfig command line program to extend the PPM attribute
configuration. If you use the -extractattributes argument without the
-autoexentattributes switch, no XML import data will be imported.

This argument writes attributes transferred to process instances using the automapping
option to the specified file. No XML import files are imported.

These arguments can be used to limit the log output. Error messages resulting in program
abortion will always be output in the console.

Multiple data sources can be imported simultaneously by means of the -datasourcelist <file>
argument (see chapter runxmlimport command line program (page 62)). To import multiple
data sources a configuration file is available in which you can specify a list of data sources.
During an XML import, the data of the data sources specified in the configuration file are
imported consecutively, just as if the XML import was called consecutively multiple times
using the -datasource <file> argument. The sequence of the data source import is specified
in the configuration file.

The configuration file must match the datasourcelist.dtd DTD, which looks as follows.

<!ELEMENT datasourcelist (datasource*)>
<!ELEMENT datasource (#PCDATA) >
<!ATTLIST datasource
name ID #REQUIRED
type (EVENT | MYSAP | JDBC | CSV ) #REQUIRED
>

You need to specify an ID for each data source, that is, the name of the data source also used
in PPM CTK, the data source type, and the path to the data source file.

An XML file can look as follows.

<?xml version="1.0" encoding="IS0-8859-1"7?>
<!DOCTYPE datasourcelist SYSTEM "datasourcelist.dtd">
<datasourcelist>

<datasource name="CLEARING"
type="EVENT">M:/SoftwareAG/ppm/server/bin/work/data ppm/custom/umg en/xml
/CLEARING/CLEARING.xml</datasource>

66



DATA IMPORT

<datasource name="BILLING" type="MYSAP">
M:/SoftwareAG/ppm/server/bin/work/data ppm/custom/umg en/xml/BILLING/BILL
ING.xml</datasource>

<datasource name="SHIPMENT" type="JDBC">
M:/SoftwareAG/ppm/server/bin/work/data ppm/custom/umg en/xml/SHIPMENT/SHI
PMENT .xml</datasource>

<datasource name="MATERIAL DOCUMENT"
type="CSV">M:/SoftwareAG/ppm/server/bin/work/data ppm/custom/umg en/xml/M
ATERIAL_DOCUMENT/MATERIAL_DOCUMENT.Xml</datasource>

M:/SoftwareAG/ppm/server/bin/work/data ppm/custom/umg en/xml/PURCHA
SE_PROCESS/PURCHASE PROCESS.xml</datasource>
</datasourcelist>

ERROR BEHAVIOR

If the XML import is called via a valid configuration file that does not contain any data sources
the import ends without outputting an error message.

If the XML import is called via a configuration file containing multiple data sources, and if an
error occurs during the import of a data source that leads to cancelation of this import, the
import continues with the next data source file. This means that the cancelation of the import
of one data source does not result in the cancelation of the overall import.

If an error occurs during the import of at least one data source from a configuration file,
which has so far lead to an exit error status (that is, "-1") during the import of individual data
sources, the import using that configuration file will also return this exit error state.

3.7 Re-importing the same data

In the PPM system, repeated importing of the same source data always leads to the same

unique result.

3.71 Graph format

When re-importing the instance data using graph format, the process instances are uniquely
identified by the AT_EPK_KEY attribute. Existing process instances are overwritten with
imported process instances with the same attribute value.

3.7.2 System event format

When re-importing the instance data using system event format, identical objects are
automatically overwritten. Identical objects are identified by an identical internal object key,
which is calculated during the import and is stored in the AT_INTERNAL_OBJECT_KEY

67



DATA IMPORT

object attribute. Rules for the calculation of the object keys are specified in the
internalobjectkeyrules XML element in the file keyrules.xml. In case of identical objects,
the last object imported is transferred into the process instance.

EXAMPLE

The file extract below defines rules for the calculation of the object key for functions and
events. Events are identified as identical if the values of the AT_OBINAME_INTERN and
AT_MERGE_KEY_1 attributes match. Functions are identified as identical if the values of the
AT_OBINAME_INTERN and AT_END_TIME attributes match.

<internalobjectkeyrule>
<refobjects>
<refobject objecttype="OT EVT"/>
</refobjects>
<keyparts>
<keypart attributetype="AT OBJNAME INTERN"/>
<keypart attributetype="AT MERGE KEY 1"/>
</keyparts>
</internalobjectkeyrule>
<internalobjectkeyrule>
<refobjects>
<refobject objecttype="OT FUNC"/>
</refobjects>
<keyparts>
<keypart attributetype="AT OBJNAME INTERN"/>
<keypart attributetype="AT END TIME"/>
</keyparts>
</internalobjectkeyrule>

68



DATA IMPORT

4 Import of process instance-independent data

This chapter describes the import interface for importing process instance-independent
measure and dimension values.

Process instance-independent data takes aspects into account that are not
process-oriented, for example, commercial fixed costs, customer satisfaction, or financial
measures, which characterize the financial view of a company.

PROCESS INSTANCE-INDEPENDENT MEASURES

The values of process instance-independent measures (see chapter Process
instance-independent measures (page 69)) are measure values that are not calculated
based on process instance data. They are imported directly with the referenced dimension
values and without reference to process instance data.

Process instance-independent measures can be used as a basis for user-defined measures
and thus be combined with process instance-dependent measures.

PROCESS INSTANCE-INDEPENDENT DIMENSION DATA

You can import into a PPM system values of keys and descriptions for one-level, two-level,
and n-level text dimensions in advance that is, before the actual data import (see chapter
Dimension values (page 83)).

4.1 Process instance-independent measures

The following chapters describe the configuration of import data formats (XML, CSV, XLS) for
process instance-independent measures as well as the import and export of process
instance-independent measure values.

A precondition for this is the existence of the corresponding process instance-independent
measures in the PPM system. If you want to define and register process
instance-independent measures, please refer to the technical reference PPM Customizing
for instructions.

411 Data import formats

You can import import data of process instance-independent measures in the following
formats:

69



DATA IMPORT

= XML (default)
= (CSV
= XLS

Regardless of the import data format, you must always specify all key dimensions
(iskeydimension="TRUE" attribute of the refdim element in the definition of the data series,
see technical reference PPM Customizing) and at least one of the process
instance-independent measures of the data series. You can optionally specify further process
instance-independent measures or non-key dimensions of the relevant PIKI cube in the
import data structure.

4111 XML format

The XML data import format for process instance-independent measures is preset by the
following document type definitions:

DTD pikidata.dtd (referencing of data series as import data)

<ENTITY % tabledata dd SYSTEM "_tabledata duad>
ot ecata dod,

<IELEMENT piddata (pikicube" )=

<IEL EMEMT pildcubes (datacds, datarow®)>

<BATTLIST placube
nearmiy MMWTOREN #REQLIRED=

Import data is specifbd in Labde Bormal which 15
Specified in _tabl edata dtd

The fle contans data {pikhdata) redating to any
numbser of BF1 senes | pikloube)

The data columns ae filed with the KFs and
dimenskons 1o which refarence s mads (datseels). it
15 possible lo speciy any number of data rows

{ datarow] vetech ane provickid with the comespondng
T vk

The data reference a specific K now whose name
{18 mmurst be spaafied

DTD _tabledata.dtd (table format for importing process instance-independent data):

<IELEMENT datacals [dalacol)>

<ELEMENT datacd EMPTY=
<IATTUST dataccd
name  MMTOKEN #REQUIRED
form CDATA  SIMPLIED=

<|ELEMEENT daterow [vaus®)=

<EELEMEMT wvalué (#MPCDATA)=
<IATTUST value
relévance NMTOKEN #MPLED=

Specicanon of any rumber of tabla colurmns

Specficaon of a K or dimension column wath
identfier (mame) of the KM or dmension to which is
made reference. it is possible to specfy a diferent
data format

Value specification. Each datmrow slement répresents
an enfire data sat. The rumber of values (value) rmust
comrespand bo the numbsr of columns

| A vl st De Spacified. A rélivancd viaki @ may ba
| assignad to the K values
|

L

Thus, import data of process instance-independent measures in XML format have the

following general structure:

<?xml version="1.0" encoding="IS0-8859-1"7?>

70



DATA IMPORT

<!DOCTYPE pikidata SYSTEM "pikidata.dtd">

<pikidata>
<pikicube name="...">
<datacols>
<datacol name="..."/>
</datacols>
<datarow>
<value relevance="...">...</value>
</datarow>
</pikicube>
</pikidata>
ELEMENT and Description
ATTLIST
pikidata
pikidata List of import data on any number of process
instance-independent data series (PIKI cube)
pikicube Data series into which the specified data is to be
imported
name Data series identifier. Must match the name of the
PIKI cube (pikicube name XML attribute) specified in
the measure configuration.
ELEMENT and Description
ATTLIST
datacols
datacols Import data structure (table columns of the data
series)
datacol Specification of a table column. A column is specified
for each process instance-independent measure and
each relevant referenced dimension.
name Table column identifier. Must match the names of the

process instance-independent measures (pikidef
name) specified in the measure configuration and the

names of the referenced dimensions (refdim name).

A



DATA IMPORT

ELEMENT and
ATTLIST
datacols

format

datarow

value

relevance
(optional)

Example 1

<?xml version

Description

Optional import format for column values. Supported
formats are floating point numbers, time and time of
day values.

Specific import data for the data series in the form of
a data row. The sequence of import values (value
elements) must match the column sequence
(datacols) so that each criterion of the data series
(process instance-independent measure or
referenced dimension) can be assigned a unique
value.

Data row column value to be imported (value of a
referenced dimension or a process
instance-independent measure)

Relevance value referring to the corresponding value
of a process instance-independent measure

="1.0" encoding="IS0-8859-1"7?>

<!DOCTYPE pikidata SYSTEM "pikidata.dtd">

<pikidata>
<pikicube name="PIKICUBE COSTS">

<datacols>
<datacol name="OVERHEAD COSTS"/>
<datacol name="PROCESSTYPE"/>
<datacol name="TIME" format="MMM yyyy"/>
<datacol name="MATERIAL"/>

</datacols>

<datarow>
<value relevance="100">1000 EUR</value>

<value>Order processing\Car industry</value>

<value>June 2000</value>

<value>NaviSet B6{Navigation system}</value>
</datarow>

<datarow>

</datarow>

</pikicube>

</pikidata>

72



DATA IMPORT

The XML-Element datacols specifies the identifiers of the process instance-independent

measures and referenced dimensions (datacol name="...") that the data import refers to for

the relevant data row. The import data structure is specified in a simple table format in which
each criterion of the data series (process instance-independent measure or referenced

dimension) represents a table column.

The actual import values are extracted from the datarow XML elements. Each of these
elements represents a data row that is imported. Each specified value element corresponds
to the matching datacol element of the specified import data structure.

The sequence of the values (value XML element) in a data row (datarow XML element) must
match the sequence of columns (in the datacols XML element) in the import data structure.

In the XML attribute format="MMM yyyy", the data format for the value to be imported for
the referenced dimension TIME is specified. Format information is optional.

Specifying a descriptive text in curly brackets { } means that the values for the one-level
dimension MATERIAL are expected in the form <ldentifier>{<Descriptive text>}. Specifying
a descriptive text is optional, as only the identifier is crucial for the dimension reference.

The example data set has a relevance value for the process instance-independent measure
OVERHEAD_COSTS. If you do not specify a relevance value, relevance="1" is the default

value.

If no unit is specified for a data value, by default the base unit for the attribute data type is
used on which the process instance-independent measure or referenced dimension is based.

Example 2
There are two different formats for importing values of two-level dimensions:
= Value definition in a row:

The values are separated by a backslash (\).

.;datacols>
;aétacol name="PRINCIPAL" />
</aé£acols>
;&étarow>
;Qélue>DE{Germany}\OOOOOOOOOl{Becker}</value>
</aé£arow>

73



DATA IMPORT

= Value definition in two rows:

The values are specified in two XML elements that directly follow one another.

<datacols>

<datacol name="PRINCIPAL"/>
<datacol name="PRINCIPAL"/>

</datacols>
<datarow>

<value>DE{Germany}</value>
<value>0000000001{Becker}</value>

</datarow>

4.1.1.2 CSV format

For importing in CSV format, the following special features apply:
= A CSV file can only contain data for one data series.

= The values specified in a CSV file must not contain the specified data separator. The data
separator is specified using the -esvchar "<Character>" option in the runpikidata
command line program.

Example (with row numbers)

1 PIKICUBE COSTS

2 OVERHEAD COSTS(.,);OVERHEAD COSTSNUM; TIME (MM.yyyy) ;<
PROCESSTYPE; PROCESSTYPE

3 1.000,00 EUR;100;05.2000;0rder processing;«

Car industry

4 1.020,00 EUR;;06.2000;0rder processing; <+’

Car industry

Explanation
= Row 1: Name of the data row (for example, PIKICUBE_COSTS)

74



DATA IMPORT

= Row 2: Specification of the import data structure
The individual table columns of the data series are separated by semicolons. Format
information can be specified after the column name in round brackets.
The optional specification of the relevance must directly follow the relevant measure. The
relevance column name is made up of the name of the measure supplemented by the
string NUM (for example, OVERHEAD_COSTSNUM).

=  From row 3: Import data

Each row represents a data series data row to be imported. The individual values are
separated by the specified separator.

For the import values of the process instance-independent measure OVERHEAD_COSTS, a
relevance value (OVERHEAD_COSTSNUM) of 100 (1,000.00 EUR;100) is specified in the first
data row (row 3), the second data row (row 4) has no relevance value (1,020.00 EUR;;). In this
case, the relevance value is automatically set to 1.

The values for two-level dimensions (in the example: PROCESSTYPE) are imported using two
separate, successive columns with the same name. The first column contains the rough
value, the second the detailed value.

The optional format MM.yyyy for the referenced dimension Time consists of an integer
month number followed by a four-digit year number. The individual field values are separated
by a full stop (see Data formats (page 45)).

You can import data for process instance-independent data rows from Excel files into the

PPM system. For importing in XLS format, the following special features apply:

=  An Excel file can only contain data for one data series on each worksheet. All worksheets
from the Excel file are imported.

*  When importing a worksheet, the entire area of the sheet is always imported. Columns
and rows with no content are skipped.

= The names of the worksheets to be imported can be specified with the optional command
line parameter -sheet. If the name contains spaces, you need to enclose the name in
quotation marks. To import several worksheets from a file, enter the names separated by
spaces.

=  The cell format for dimension columns must have the data type Text. The format of cells
in measure columns must be of the type Text or Number. Formatting rules (for example,
separators for decimals and thousands) can only be specified for measure values in text
format.

75



DATA IMPORT

In principle, the data format corresponds to that in CSV format. The information in the
worksheet is expected in the following order:

= Cell A1: Name of the data series
=  Cell A2 and following cells (row 2 only): Definition of data structure

= Cell A3 and following cells (all rows): Data values

Example: File extract from MS Excel with default positioning

A | E | i |
1 |PC_CUSTSAT
2 |CUST SATISFACT(.) TIMEMM yyyy) PRINCIPAL
3 |[7B0 01.2004 DE{DEUTSCHLAND}
4 |6.60 02.2004 USIUSAL
5
B
M 4 » w2004 4 2005 /2006 /

The name of the data series is specified in cell A1. In cell B1, the area is specified that contains
the import data structure information, and cell C1 specifies the area that contains the actual
import data. The positioning has the general format

<Position of start cell>[:<Position of end cell>]

If you only specify the position of the start cell, for example, C8, the data from all subsequent
columns will also be imported. In this case, the specification corresponds to an infinite area of
the table.

If you specify the same row number when specifying the position of the range of import data
to be extracted, for example, C9:E9, the specified columns are extracted to the end of the
worksheet and an unlimited number of data rows is thus imported. To import a precisely
limited range of values, you must specify the first and last data row, for example, C9:E10.

76



DATA IMPORT

Example: File extract from MS Excel with explicit positioning

A [ B ] c | D [ E
1 |PC_CUSTSAT CB.EB CI.E1D | | |
2
3
4
5
B
7
8 'CUST_SATISFACT(,) TIME(MM.yyyy) PRINCIPAL
9 760 01.2005 DE{DEUTSCHLAND}
10 6.50 02.2005 US{USA)}
11

The import data structure of the process instance-independent data series PC_CUSTSAT is
specified in cells C8 to E8, and the actual values to be imported are specified in cells C9 to
E10.

You can use the remaining Excel table area for comments, etc. This area is ignored during the

import.

RELATIVE STARTING POINT

The name of the data series is specified in a position different from the implicit position (cell
A1). The position of the cell in the worksheet is specified by the sheet parameter and the
name of the worksheet. The syntax is

-sheet <Worksheet name>:<Cell>.

77



DATA IMPORT

Example 1: File extract from MS Excel with relative starting point and implicit

positioning
A | B | c | D I
]
2
3 PC_CUSTSAT
4 CUST_SATISFACT(,.) TIME(MM.yyyy) PRINCIPAL
5 7.60 01.2005 DE{DEUTSCHLAND}
b .60 02.2005 US{USA}
Fi
B8
M 4 » »\ 2004 Y2005 (2006 /

Example 2: File extract from MS Excel with relative starting point and explicit

positioning

= A [ B ] C 1 D | E |
ksl

2

3 PC_CUSTSAT C8:E8 C9:EID

el

S

| 6 |

=

8 CUST_SATISFACT(,) TIME(MM.yyyy) PRINCIPAL

ER 7.50 01.2006 DE|DEUTSCHLAND}
10 6.60 02.2006 Us{usa}

11

W o« » w) 2004 f2005% 2006 /

For both examples, the data is imported using the following command:

runpikidata -user <username> -password <password> -mode import -format XLS
-file excelpikidata.xls -sheet 2006:B3

412 Data reimport

Data import into process instance-independent data series adds new data rows

and overwrites changed existing data rows.

If the data import is repeated, existing data rows are overwritten with changed, updated
values of process instance-independent measures and referenced dimensions of the data
series, and new data rows are added to the relevant data series. The PPM system recognizes
existing data rows through a data series' key dimension values.

78



DATA IMPORT

Key dimensions are determined by the iskeydimension="TRUE" attribute of the refdim
element in the definition of the data series. For further information, please refer to the
document PPM Customizing.

Example

The following data row has already been imported into an existing data series:

D_COUNTRY* D_PLANT* D_DEPARTMENT D_RECORDED SALES COSTS
* BY

Germany Hamburg 42 Smith 400000

Referenced dimensions marked with * are the key dimensions of the data series. Therefore,
the value combination Germany; Hamburg; 42 is the identifier of the displayed data row. The
two process instance-independent measures SALES and COSTS are configured for the data
series.

If data import is repeated, for example, with the values Germany; Hamburg; 42;
Huber;;280000, the PPM system recognizes that the data row already exists and overwrites
the value of the dimension D_RECORDED BY (Schmidt) with the changed value (Huber) and
adds a value for the process instance-independent measure COSTS.

D_COUNTRY* D_PLANT* D_DEPARTMENT D_RECORDED SALES COSTS
* BY
Germany Hamburg 42 Huber 400000 280000

The value of the process instance-independent measure SALES remains unchanged and is

retained because no new value was imported during the repeat data import.

The values of process instance-independent measures can be exported in XML format using
the runpikidata command line program. To do so, use the command line argument -mode
export (see chapter runpikidata command line program (page 80)).

The data on all data series of the specified client are written to the specified file using the
argument -file. To export particular data series, specify the names of the data series you
want to export, separated by commas, using the -pikicube argument.

The PPM user performing the operation requires the Data import function privilege.

79



DATA IMPORT

Example

runpikidata -user system -password manager -client umg en -mode export -file
pikidata -pikicube
PC_SALES REVENUES

414 Deletion of values of process instance-independent
data series

You can delete values of process instance-independent data series in the PPM system using
the command line program runpikidata. To do so, use the command line arguments -mode
delete and -pikicube <cube name>[,<cube name>,...] to specify the data series from which
you want to delete values.

By default, all values of the specified PIKI cubes are deleted.

You can limit the data rows of a data series to be deleted by specifying a paramset that
contains a filter on a referenced dimension of the data series, for example. To do this, enter
the name of the paramset file using the -ps parameter.

If the delete paramset contains dimension filters that are not included as referenced
dimensions in the definition of the specified data series an error message is output when you
run the program. The PPM user performing the operation requires the Data import function
privilege.

Example

You want to delete import values of the data series with the internal identifier PC_SALES
(PIKI cube Sales) in the time period of the 1st quarter in 2009.

In the analysis, set a delete paramset with the corresponding time filter and export it to a local
XML file. Then call up the runpikidata command line program as follows:

runpikidata -client <ppmclient> -user <username> -password <password>
-pikicube PC _SALES -mode delete -ps <deleteparamset>.xml

415 runpikidata command line program

The data import or export of process instance-independent data series is executed using the
command line program runpikidata:

runpikidata -user <user name> -password <password>
[-client <name>]
-mode (import|export|delete)
[-compatibled]

80



DATA IMPORT

-file <filel>[,<file2>...]

[-format {XML|CSV|XLS} [-csvchar "<character>"
[-encoding "<encodingname>"]]]

-pikicube <cubename>[,<cubename>...]

-ps <filename>

[-sheet <name>[:<cell>] [<name>[:<cell>]]1]
[-version]

[-language <ISO code>] [ protocoloptions ]
[-recoveryfile {yes|no}]

-user <user name> Name of user
-password <password> User password
-client <name> Name of client If

no client is specified
the server of the
default client will be used.
—-language <ISO code> Import language
-mode (import|export|delete) Import, export,
or deletion of data
—-compatibled Import of dimension values as
in PPM 4.x without checking the
refinement level
-file <filel>[,<file2>...] Import files (-mode import)
or export files
(-mode export).
ZIP files are supported.

—-format {XML|CSV|XLS} Data format for the import
(default: XML)
—-csvchar "<character>" Data separator for the

"CSV" import format
(Default: comma)
-encoding "<encodingname>" Encoding of the CSV file
(default:
Default encoding for
workstation)
-pikicube <cubename> Data series from which data
[, <cubename>...] is to be deleted or
exported (-mode delete|export)
-ps <filename> Paramset specifying the
data to be deleted (-mode delete)
-sheet <name>[:<cell>]> Specifies Excel sheets for the
"XLS" import format. The
cell specifies the position from
which the data is to be
imported.
-recoveryfile {yes|no} Creates after successful
import the new
process analysis-relevant
analysis server recovery files
Default: yes)

-version Version number of the application
and the database database schema

protocoloptions can consist of the following instructions:



DATA IMPORT

-protocolfile <file name> Log to file
<file name<

-information {yes|no} Logging of
information

-warning {yes|no} Logging of warnings

—error {yes|no} Logging of errors

The version of the PPM software and the database schema are output on the console. Other
arguments are ignored.

With this parameter, you specify the user name and the password of the PPM user who is
executing the import. The user must have the Data import function privilege.

With this parameter, you specify the PPM client in whose database schema the imported
process fragments are to be saved. If you do not use this option the default client is used.

For example, with this parameter you specify that you want to import (-mode import -file
<file1>[,<file2>...]) a source file (or several source files) including data of the selected import
format (-format {XML|CSV|XLS})) or export (-mode export -pikicube <cubename> -file
<filename>) data of a data series existing in the PPM system into an XML file, or that you want
to delete entirely (-mode delete -pikicube <cubename>[,<cubename>...]) or in part (-mode
delete -pikicube <cubename> -ps <filename>) data from the specified data series.

With the optional parameter, you specify that when importing values of referenced,
multi-level text dimensions (refdim) the refinement level (refinement) of the import data will
not take place, just as in PPM versions 4.x. This is necessary if dimension values of process
instance-independent measure import data for PPM from version 5 exist with a refinement
level other than the one specified in the definition of the data series (see technical reference
PPM Customizing).

With this parameter you specify the import file(s) and the path to the import file(s). The source
file can be a ZIP file, which contains one or more import files with the same data format.

82



DATA IMPORT

-FORMAT {XML|CSV|XLS}

With this parameter you specify the data import format used.

-CSVCHAR <CHARACTER>

With this parameter you specify the separator for data field values in CSV import format
(default value is the comma).

-ENCODING "<ENCODINGNAME>"

With this parameter you specify the name of the optional CSV encoding you want to use. By
default, encoding CP-1250 is used for CSV files under Windows.

-SHEET <NAME>[:<CELL>]>

With this parameter you specify the name of the Excel worksheet from which you want to
import the data. You can specify the names of multiple worksheets, separated by spaces. The
<cell> argument can be used for each worksheet to specify the relative start position (cell
containing the name of the data series) from which the data is to be imported.

-RECOVERYFILE {YES|NO}

With this parameter you specify if analysis server recovery files relevant for process analysis
are to be created after import or deletion of values of process instance-independent data
series. The default value is yes.

4.2 Dimension values

For one-, two-, and n-level text dimensions, you can import dimension values (especially
comprehensive level descriptions) into the PPM system before the actual PPM import.
Dimension values consist of a mandatory ID and an optional description.

Advantages:
*  You can create planned value definitions in PPM before process instances are imported.

* You can significantly reduce the data volume of the process instances to be imported
during the actual PPM import by not specifying the level descriptions already imported.

83



DATA IMPORT

4.2.1 XML format

The format of the XML file is specified by the following DTD:

<ENTITY % tatiedata dtd 5y STEM *_tabledata did"» Impoit data &re spedified in table format which =
“otabl edata dtd; speciied in the _tabledata.dtd file
<IELEMENT dmdaa (dm™)= This ctata impor may contan data (dimdata) on any
number of dmension values
<IEL EMENT oim {datacols, datarow® )= Thi data columns | detacols) refer o dimension
<IATTLIST dem name MNidTOREN MREQUIRED propedties. It is possitle to specify amy number of data

rows {datarew) which are provided with the
colrespondng impot valies

The imgort dita rebarence 8 spectic dmension whosa
narmé mus be specified

The following table illustrates the assignment of data columns to the dimension values (<n>
represents the consecutive numbering of the level):

dimdata Dimension configuration Example
configuration

LEVEL<n>_ID ID of the n-th dimension level LEVELS5_ID
LEVEL<n>_DESC Description of the n-th LEVEL5_DESC

dimension level

Example

For the two-level dimension Sold-to party (PRINCIPAL), three values are imported:

<?xml version="1.0" encoding="IS0-8859-1"7?>
<!DOCTYPE dimdata SYSTEM "dimdata.dtd">

<dimdata>
<dim name="PRINCIPAL">
<datacols>

<datacol name="LEVEL1l ID"/>
<datacol name="LEVELl DESC"/>
<datacol name="LEVEL2 ID"/>
<datacol name="LEVEL2 DESC"/>
</datacols>
<datarow>
<value>DE</value>
<value>Germany</value>
<value>0000000003</value>
<value>Becker</value>
</datarow>

84



DATA IMPORT

<datarow>
<value>FR</value>
<value>France</value>
<value>0000000092</value>
<value>Leclerc</value>

</datarow>

<datarow>
<value>EN</value>
<value>United Kingdom</value>
<value>0000000027</value>
<value>Crichton</value>

</datarow>

</dim>
</dimdata>

4.2.2 CSV format

For importing in CSV format, the following special features apply:
= A CSV file can only contain data for one dimension.

» The dimension values specified in a CSV file must not contain the specified data
separator. The data separator is specified using the -esvchar "<Character>" option in
the rundimdata command line program.

Example (with row numbers):

PRINCIPAL

LEVEL1 ID;LEVELl DESC;LEVEL2 ID;LEVEL2 DESC
DE; Germany;0000000003;Becker
FR;France;0000000092; Leclerc

UK;United Kingdom;0000000027;Crichton

g w N

Explanation
=  Row 1: Dimension identifiers

* Row 2: Definition of data structure
The individual columns are separated by a semicolon. The column names are keywords,
which must not be changed.

=  From row 3: Data values

Each row contains one record. The individual values are separated by the specified separator.
The values specified must each match the data types specified in the attribute type

85



DATA IMPORT

configuration. From left to right, the column entries represent: Country code, Name of
country, Principal ID, Principal name

If you specified replacement or default values for the key or the description of a dimension
level in the measure configuration and want to use these values for importing with
rundimdata, you need to leave the corresponding value elements in the XML import file or
column values in the CSV file empty.

For more information about using default and replacement values in text dimensions, refer to
the PPM Customizing Technical Reference.

In principle, the import of process instance-independent dimension values (rundimdata
-mode import) is additive, that is, dimension values that do not exist are added in the PPM
system (only for the two-level text dimension PROCESSTYPE an additive import is
impossible).

If you additionally specify the command line option -overwrite, existing descriptions of
dimension levels are overwritten with the imported, changed descriptions.

If you want to delete the descriptions of particular dimension levels, import empty
descriptions for these dimension levels in the overwrite mode using -mode import

-overwrite.

To delete dimension values, use the -replace option of the rundimdata command line
program. This marks all dimension values that are not included in the import file for deletion.
To delete the data permanently, the analysis server must be completely reinitialized.
Therefore, the recovery files of the analysis server relevant for process analysis are recreated
by default after import. After the import, the command line program outputs a corresponding
message.

If you want to delete all dimension data of a dimension, import a semantically empty file.

The option -replace to replace or delete dimension values implies the option -overwrite.
Therefore, you must not specify the option -overwrite in the command line when using the
option -replace.

86



DATA IMPORT

4.2.6 rundimdata command line program

Process instance-independent dimension values in XML and CSV format are imported using
the rundimdata command line program:

rundimdata -user <username> -password <password> [-client <name>]
-mode import
-file <filel>[,<file2>...]
[-format {XML|CSV} [-csvchar "<character>"]]
[-overwrite |-replace]
[-recoveryfile {yes|no}]
[-version]
[-language <ISO code>] [ protocoloptions ]

—user <user name> Name of user
-password <password> User password
-client <name> Name of client If no client is specified,
the server of the default client will be used.
-language <ISO code> Import language
-mode import Import of data
-recoveryfile {yes|no} After import into the analysis server

the recovery files relevant for
process analysis are recreated.

—-file <filel>[,<file2>...] Import files. ZIP files are supported.

-format {XML|CSV} Data format for the import (default: XML)

-csvchar "<character>" Data separator for "CSV" import format
(default: comma)

-overwrite Overwriting dimension descriptions

-replace Delete existing dimension values that

have been changed by a data import for dimensions
or were supplemented.

—encoding "<encodingname>" Encoding of the CSV file (default:
Default encoding for workstation)

-version Version number of the application and the
database schema

protocoloptions can consist of the following instructions:
-protocolfile <file name> Logging in the file <file name>
-information {yes|no|default} Logging of information
-warning {yes|no|default} Logging of warnings
—error {yes|noldefault} Logging of errors

-VERSION

The version of the PPM software and the database schema are output on the console. Other

arguments are ignored.

-USER <USER NAME> -PASSWORD <PASSWORD>

With this parameter, you specify the user name and the password of the PPM user who is
executing the import. The user must have the Data import function privilege.

87



DATA IMPORT

With this parameter, you specify the PPM client for which you want to save the imported

dimension values. If you do not use this option the default client is used.

With this parameter you specify that the source files are to be imported with process
instance-independent data.

With this parameter you specify the import file(s). The source files can be ZIP files containing
one or more XML file(s) of the same data format.

With this parameter you specify if analysis server recovery files relevant for process analysis
are to be created after import of process instance-independent dimension values. The default
value is yes.

You can boost the performance of multiple sequential dimension data imports by suppressing
the creation of the analysis server recovery files for all previous imports. To do so, specify the
option -recoveryfile no. Only the last import creates the analysis server recovery files
relevant for process analysis if the option is missing or if -recoveryfile yes was specified.
Please make sure that the analysis server recovery files relevant for process analysis are
created in any case once the import is complete. You can force the creation of all recovery
files using the command line call runppmadmin with the option -recoveryfile force.

With this parameter you specify the data format used.

With this parameter you specify the separator for data field values in CSV import format
(default value is the comma).

With this parameter you specify that existing descriptions of text dimension levels will be
overwritten with changed (also empty) values. Text dimension keys (IDs) cannot be

overwritten.

88



DATA IMPORT

With this parameter, you can overwrite already imported dimension data. Dimensions not
included in the import file are deleted. This parameter implies the parameter -overwrite.
After the import, the analysis server recovery files relevant for process analysis are recreated.
(default behavior)

In addition to process, function, and interaction analyses, you can now evaluate
process-independent data using Data analytics. Data analytics enables the analysis of
comprehensive data in table format, consisting of multiple linked tables. In Data analytics,
analysis criteria, that is, dimensions and measures, are based on the table structure of the
data basis, with each table column representing an analysis criterion.

The technical documentation PPM Data Analytics provides information on the import of Data
analytics data.

89



DATA IMPORT

If the maximum number of functions allowed per EPC is exceeded during the import of large
EPCs an error message is displayed. However, the import is not aborted.

The threshold for the maximum number of functions allowed in an EPC is controlled by the
configuration parameter KI_EPC_FUNCTION_COUNT_THRESHOLD defined in the file
Epkimport_settings. The default value for this parameter is 500. It applies if the parameter
is missing or has a value of <= 0. If the parameter falls back to the default value a
corresponding warning is written to the log.

As soon as a large EPC exists in the database XML import, PPM import, and process import are
blocked in DEFAULT mode. A corresponding error message is output and import is canceled.
Process import in RECOVERIMPORT mode is not affected.

To resolve this issue you can set the configuration parameter to a sufficient value. However,
this can lead to the system requiring increased main memory. Alternatively, you can delete
the EPC that causes the problem (see following section).

You can delete a large EPC using the runppmdelete command line program. This applies only
if you have defined a process measure for the number of functions in a process instance. If
you did so, you define a paramset as follows for the command line program.

*  The ParamSet contains the number of functions only as a filter

*  The ParamSet contains the number of processes as a measure.

= The ParamSet contains a time filter.

» The ParamSet contains a process type filter or a process type group filter.

The measure can also be defined at a later time (that is, when imports are already blocked). In
this case, the EPCs need to be recalculated using the runppmimport -keyindicator new

command line program.

90



DATA IMPORT

6 Appendix

6.1 Design of a Process Warehouse

This chapter provides an overview of the design of a Process Warehouse in PPM and then
gives a brief explanation of each individual step. It is assumed that the necessary installation
and configuration of the PPM system has been completed.

The design of a Process Warehouse comprises the following steps:

1. Reading from source system
- reading actual data

- creating process fragments

poduwnjuxuny

1aydepy

Z. Importing process fragments

3. Merging process fragments to process instances
' {and, if applicable anonymizing organizational units)

4. ldentifying process instances

podwiuwddund

5. Calculating key performance indicators

6. Signalizing planned value deviations

1. First, the actual data is extracted from the source system and provided in the form of
process fragments for importing.

2. The process fragments are imported.

3. The next step involves searching all imported data for the fragments belonging to each
business event and merging them into a process instance. Object attributes are copied to
the process instance. When merging the process fragments, information about the actual

user can be made anonymous.

4. The process instances generated are then classified: process instances of the same kind
are assigned to process types, which are in turn summarized into process type groups.

5. For each process instance, the defined measures are calculated and stored in info cubes.
6. Exceeding of planned values is checked and, if necessary, signaled.

Designing a Process Warehouse therefore involves generating process fragments from
sequences of transactions and document flows from the source system and merging them

91



DATA IMPORT

into process instances. These process instances are used as reference objects for analyses
and assessments of process performance. They can be displayed as process models in PPM.

Sequence of transactions or document flow in source system

o
=
=3
1]
1

Dispatch Invoice Booking
31604 3120004

Inquiry Quotation

33104 3/8/04
3204

L&
.

1/
L
)

Liqlh

o™ [T

Process
fragments

“ctorm;

[} F{ e (100N
*D—D—D- 1]

<

- C-O-C)-O-C -

Quotation Order EIREHen Invoice Invoice
production acceptance production check

Event-driven process chain (process instance)

The event-driven process chain (EPC) consisting of a chain of objects is used to represent a
process instance. Both objects and the process instance itself can have attributes, in which
the instance data is saved. This data is used to classify the process instances into types and
to calculate the measures. The calculated measures are in turn saved in attributes of the
objects and process instances. The attributes are therefore the actual carriers of information
in the PPM system. The available attributes are defined in the PPM configuration. The
configuration is composed of default attributes, such as Process identifier and End time
and freely definable system-specific attributes.

ADDITIONAL INFORMATION ABOUT EPCS:

An event-driven process chain (EPC) is a model type developed by Prof. Scheer to graphically
describe the chronological sequence of a performance delivery process. It is based on the
following assumptions:

» Each activity within a process is triggered by a commercially relevant change of state of
an information object. Each activity can result in a commercially relevant change of state
of an information object.

* The state of a business-relevant information object is defined graphically by an object of
the Event type.

92



DATA IMPORT

= Objects of the Function type are used for the graphic representation of activities. Linking
events and functions in series and connecting these objects with directed connections
represents the control flow of the process graphically.

= Asan event can trigger several functions and, conversely, a function can have several
events as its result, AND, OR or exclusive OR connections (rules) are inserted at these
branches. They illustrate the logical relationship that exists between the sequenced
objects.

* Organizational units describe the groups of users executing a function.

6.1.1 Generate process fragments

Process data can be retrieved from the application systems in various ways.
Schema: Data extraction

System A System B System X System Y

XML interface XML interface
Event format Graph format

Process merge

PPM

Process identification + KPI calculation

| bl echl B fg v g e gt 20 bt Bl oy e [ ner)

With SAP R/3, special adapters access operational R/3 document data online and transform
the SAP document flows into process descriptions. These adapters are only mentioned here
for the sake of completeness.

93



DATA IMPORT

With all other application systems, process data is imported into the PPM system offline via a
generalized XML import interface using a file.

The XML import interface can process two different types of XML files: XML files in PPM graph
format and in PPM system event format.

Graph format is used to transfer already structured process data from process-oriented
application systems (for example, workflow systems). The application-specific adapter
generates XML files, in which process instances including their procedural logic are described
in PPM graph format.

System event format is used for all activity-oriented application systems, in which the
information making up the process (procedural logic) cannot be extracted. The system events
are interpreted as process fragments.

Example: Assignment of a process fragment to an Order created system event

Triggering event
(start event)

Order
created

Create
arder

Order
managerment

Function
{activity, processing step)

End event

AVAVA

A process fragment describes one part of an overall process. It contains at least one function
with its triggering and resulting events. A process fragment can be interpreted as an
individual operation, an activity or a transaction within an overall process. In addition to the

94



DATA IMPORT

chronological flow, a process fragment can also contain information about the processor of a
function in the form of organizational units.

When extracting from source systems, every system event is assigned a process fragment
using the mapping definition. The instance data for the system event is written to the objects
in the process fragment as attributes.

Using the attribute values of the fragment events, the individual process fragments are then
merged into process instances.

Process fragments are only imported into the PPM database if they can be assigned to

particular process instances.

This chapter describes the merging of the imported process fragments into process
instances. Merged process fragments correspond to business processes, which have actually
been run through. They are known as process instances and, in the same way as the
fragments, are represented in the EPC notation familiar from ARIS.

When merging, attributes are copied to the process instances and any processor data specific

to a particular person is made anonymous.
The merging process takes place in two stages:

In the first step, the process fragments belonging to the same process instance, are identified
and copied into a process instance using process keys.

95



DATA IMPORT

Example: Step 1 of process merge

oot B Fragment PID1H Process instance
Order Order
{ crested > ] { crested }
= >
=3 | Creste ﬁ | Create
n order m order
n . i .
3 a
o =
(' Order Order
i created } { created >
Fragment 2 ;

Creste Create
delivery | delivery
: Delivery > Delivery
created _EI

1st level: Merging two process fragments

PIDT H+
E=)0 ()12

In the second step, the unconnected process fragments are linked together by merging the

merge events. Merge events are events for which merge keys have been calculated.



DATA IMPORT

Example: Step 2 of process merge

PID1 Ll Process instance PID1 ] Processinstance

Order 1 Order
created f created §
| Create I
order Create

arder [
Order
: crested :: 3
Order
created
Order 3
crested f 4
Creste

)

Create | celivery |
delivery
Delivery & | 6 Delivery % 8
created f created £

2nd level: Event merge

i

Any branches arising from the merge process are extended using rules and any unnecessary

rules are deleted.

Example: Merge with AND rule




DATA IMPORT

In the example below, a joining XOR rule is deleted during the merge, as process instances
represent actual business transactions and they cannot contain any XOR rules. The XOR rule
and the event that has no preceding function are deleted (event 4).

Example: Merge with XOR rule

As it is not possible to distinguish between the individual source systems when merging the
imported data, PPM enables processes to be viewed across systems and across the company.
The way in which process and merge keys are calculated is set individually using rules in the
XML configuration for each client.

6.1.21 Copying the process instance attributes

When merging process fragments into process instances, attributes of objects are copied to
the process instances. Process instance attributes form the basis for the calculation of
individual measures depending on the dimensions.

When importing complete process instances in graph format, there is no merge process.
These process instances already have process instance attributes.

6.1.2.2 Making organizational units anonymous

At an instance level, the actual processors for a function are known. As the users often
cannot be shown on data protection grounds and are unimportant for the calculation of
measures, it is possible to make the processors anonymous. To do this, all employees must be
assigned to an organizational unit in PPM. When the data is imported, the staff are then

98



DATA IMPORT

replaced by the associated organizational unit in the course of merging the process. The
information about the actual user is irretrievably lost.

After merging the imported process fragments into process instances, the process instances
need to be classified to enable meaningful measure analyses. To do this, they are arranged in
a freely definable two-level hierarchy: Process instances are assigned to process types,
which are in turn summarized into process type groups. A process type group can therefore
contain several process types, which in turn can contain several process instances. However,
a process instance can only be assigned to a single process type and thus also to only one
process type group.

The rules for identification are freely definable for each specific source system. The
typification information is saved in process instance attributes.

The assignment of process types and process type group is represented in the process tree in
PPM. The configuration of the process tree also specifies which measures and dimensions are
available for the individual process types.

Process instances are actual business events that have occurred and are made up of
imported process instance fragments. Similar process instances are summarized in process
types. which in turn are assigned to a process type group. The term "process" as known from
ARIS modeling is not specified as part of PPM and should therefore not be used.

A process instance is analyzed based on calculated measures. Measures are the properties of
a process or a function calculated from measured variables. A distinction is made between
function and process measures. Alongside predefined standard measures, including the
Number of processes and Process cycle time indicators, any number of measures can be
defined in the configuration using the associated calculation rule.

Dimensions are criteria according to which the measures of process instances and functions
can be differentiated, for example the process type or the location.

For the process types contained in the process tree, the specified measures are calculated
depending on the dimensions. The result is permanently stored in the PPM database. The
values are stored in so-called data cubes to ensure that time-efficient queries can be made.

99



DATA IMPORT

Example: Data cube

| Time ]
Organization
| Division

Process type [

KM,
LHHY

[ Customer group |

[ Customer | Material I

6.1.5 Checking planned values

For process monitoring purposes, the PPM system allows you to define planned and alarm
values. Planned values relate to a set of process instances, alarm values relate to an individual
process instance. Critical upward or downward alarm value infringements are possible for
individual process instances, although the planned values for the associated set of process
instances are still being met.

Process type-specific checking for upward or downward infringement of target values for
individual measures concludes the PPM system’s data import. The calculated measures are
compared with the planned values defined in the PPM user interface and the specified
actions, such as sending an e-mail to the process manager (planned value message), are
executed.

6.2 Import scenarios

The IMPORT_SCENARIO parameter is available from PPM version 10.2 onwards. The
parameter specifies an import scenario that is used by the import programs runxmlimport,
runppmimport, runpikidata, and runppmcompress.

The parameter is available in the _vmparam.bat memory parameter configuration file and in
the Epkimport_settings.properties import parameter configuration file. Both files must
always contain the same IMPORT_PARAMETER value.

100



DATA IMPORT

= _vmparam.bat is located in <PPM
installation>\server\bin\work\data_ppm\config\<client name>\bin\

= Epkimport_settings.properties is located in <PPM
installation>\server\bin\work\data_ppm\config\<client name>\

In PPM CTK client setup, you can select a predefined import scenario that is set in both files.

The scenarios Small, Medium, and Large are available. If you do not select a scenario, the

Small scenario is set as default. If the entry is missing in the settings, or if a different value is

specified than the allowed values, the Small scenario is set as default.

Each scenario contains a specific set of parameter values. The parameter values are

optimized for the system environment.

= Small - Optimized configuration for server systems with at least 1 GB available main
memory for import programs.

* Medium - Optimized configuration for server systems with at least 4 GB available main
memory for import programs.

= Large - Optimized configuration for server systems with at least 8 GB available main
memory for import programs.

If the scenarios do not meet your requirements, you can change the values within an existing

import scenario. For example, if more than 8 GB main memory for import programs are
required.

Example

IMPORT_SCENARIO=LARGE is set. To increase the EPC read rate within this scenario to
1.500.000, set LARGE_READ_RATE_EPC=1500000 in EPKImport_settings.properties. Set
also LARGE_LOCAL_PPM5_VM_MAX_MEM_RT_PPMIMPORT in _vmparam.bat to a higher
value (for example, LARGE_LOCAL_PPM5_VM_MAX_MEM_RT_PPMIMPORT=10756)
because now the PPM import requires more main memory.

The IMPORT_SCENARIO parameter is available in the _vmparam.bat file and the
Epkimport_settings.properties file. The value for IMPORT_SCENARIO must be the same in
both files (ensured by PPM CTK).

The following parameter values in the _vmparam.bat file are assigned depending on the
import scenario selected. The parameters are written with the scenario plus an underscore.

= <IMPORT_SCENARIO>_LOCAL_PPM5_VM_MAX_MEM_RT_XMLIMPORT
= <IMPORT_SCENARIO>_LOCAL_PPM5_VM_MAX_MEM_RT_PPMIMPORT

101



DATA IMPORT

<IMPORT_SCENARIO>_LOCAL_PPM5_VM_MAX_MEM_RT_PIKIDATA
<IMPORT_SCENARIO>_LOCAL_PPM5_VM_MAX_MEM_RT_PPMCOMPRESS
<IMPORT_SCENARIO>_LOCAL_PPM5_VM_MIN_MEM_RT_XMLIMPORT
<IMPORT_SCENARIO>_LOCAL_PPM5_VM_MIN_MEM_RT_PPMIMPORT
<IMPORT_SCENARIO>_LOCAL_PPM5_VM_MIN_MEM_RT_PIKIDATA
<IMPORT_SCENARIO>_LOCAL_PPM5_VM_MIN_MEM_RT_PPMCOMPRESS

Example

SMALL_LOCAL_PPM5_VM_MAX_MEM_RT_XMLIMPORT=1024 is used for
IMPORT_SCENARIO=SMALL

MEDIUM_LOCAL_PPM5_VM_MAX_MEM_RT_XMLIMPORT=4096 is used for
IMPORT_SCENARIO=MEDIUM

LARGE_LOCAL_PPM5_VM_MAX_MEM_RT_XMLIMPORT=8192 is used for
IMPORT_SCENARIO=LARGE

Except for the exceptions listed below, all parameter values in the

Epkimport_settings.properties file are assigned depending on the import scenario

selected. The parameters are written with the scenario plus an underscore (for example,

<IMPORT_SCENARIO>_READ_RATE_EPC).

Example

SMALL_READ_RATE_EPC=100000 is used for IMPORT_SCENARIO=SMALL
MEDIUM_READ_RATE_EPC=500000 is used for IMPORT_SCENARIO=MEDIUM.
LARGE_READ_RATE_EPC=1000000 is used for IMPORT_SCENARIO=LARGE

102



DATA IMPORT

The information provided describes the settings and features as they were at the time of
publishing. Since documentation and software are subject to different production cycles, the
description of settings and features may differ from actual settings and features. Information
about discrepancies is provided in the Release Notes that accompany the product. Please
read the Release Notes and take the information into account when installing, setting up, and
using the product.

If you want to install technical and/or business system functions without using the
consulting services provided by Software GmbH, you require extensive knowledge of the
system to be installed, its intended purpose, the target systems, and their various
dependencies. Due to the number of platforms and interdependent hardware and software
configurations, we can describe only specific installations. It is not possible to document all
settings and dependencies.

When you combine various technologies, please observe the manufacturers' instructions,
particularly announcements concerning releases on their Internet pages. We cannot
guarantee proper functioning and installation of approved third-party systems and do not
support them. Always follow the instructions provided in the installation manuals of the
relevant manufacturers. If you experience difficulties, please contact the relevant
manufacturer.

If you need help installing third-party systems, contact your local Software GmbH sales
organization. Please note that this type of manufacturer-specific or customer-specific
customization is not covered by the standard Software GmbH software maintenance
agreement and can be performed only on special request and agreement.

If you have any questions on specific installations that you cannot perform yourself, contact
your local Software GmbH sales organization
(https://www.softwareag.com/corporate/company/global/offices/default.ntml). To get
detailed information and support, use our Web sites.

If you have a valid support contract, you can contact Global Support ARIS at: +800
ARISHELP. If this number is not supported by your telephone provider, please refer to our
Global Support Contact Directory.

103


https://www.softwareag.com/corporate/company/global/offices/default.html

DATA IMPORT

For issues regarding the product documentation, you can also send an e-mail to
documentation@softwareag.com (mailto:documentation@softwareag.com).

= Download products, updates and fixes

= Find information, expert articles, issue resolution, videos, and communication with other
ARIS users

If you do not yet have an account, register at ARIS Community.

You can find helpful product training material on our Learning Portal.

You can collaborate with Software GmbH experts on our Tech Community Web site. From here
you can, for example:

=  Browse through our vast knowledge base.

=  Ask questions and find answers in our discussion forums.
=  Get the latest Software GmbH news and announcements.
=  Explore our communities.

=  Go to our public GitHub and Docker repositories and discover additional Software GmbH
resources.

Support for Software GmbH products is provided to licensed customers via our Empower
Portal (https://empower.softwareag.com/). Many services on this portal require that you
have an account. If you do not yet have one, you can request it. Once you have an account,
you can, for example:

=  Add product feature requests
= Search the Knowledge Center for technical information and tips
= Subscribe to early warnings and critical alerts

= Open and update support incidents.

104


mailto:documentation@softwareag.com
https://empower.softwareag.com/

	Contents
	1 General
	2 XML
	2.1 What is XML?
	2.2 Structure of an XML document

	3 XML data import
	3.1 Graph format
	3.1.1 Object types
	3.1.2 Connections
	3.1.3 Relations (optional)
	3.1.4 Guidelines for the graph structure
	3.1.5 Attributes
	3.1.6 XML example graph

	3.2 System event format
	3.2.1 Definition of process fragments
	3.2.2 Definition of mapping
	3.2.2.1 Definition of process fragment mapping
	3.2.2.2 Definition of attribute mapping
	3.2.2.2.1 Attribute transformations
	3.2.2.2.2 Time stamp transformations
	3.2.2.2.3 Floating point number transformation

	3.2.2.3 Organizational units
	3.2.2.4 Special case of attribute mapping

	3.2.3 Create fragment definitions in ARIS
	3.2.3.1 Modeling the overall process
	3.2.3.2 Modeling the process fragment definitions
	3.2.3.3 Format of system event file
	3.2.3.4 Run the ARIS report

	3.2.4 Generating the XML output file
	3.2.5 Summary

	3.3 Data formats
	3.3.1 Special characters in XML documents

	3.4 Generating the process instance fragments
	3.4.1 Extending the attribute configuration
	3.4.1.1 Specify the data type of unknown attributes

	3.4.2 Extending the mapping configuration
	3.4.3 Multi-valued system event attributes
	3.4.4 Direct import of process attributes
	3.4.5 Special case of scaled system
	3.4.6 Archiving of XML import files

	3.5 runxmlimport command line program
	3.5.1 runxmlimport arguments

	3.6 Import multiple data sources
	3.7 Re-importing the same data
	3.7.1 Graph format
	3.7.2 System event format


	4 Import of process instance-independent data
	4.1 Process instance-independent measures
	4.1.1 Data import formats
	4.1.1.1 XML format
	4.1.1.2 CSV format
	4.1.1.3 XLS format

	4.1.2 Data reimport
	4.1.3 Export of values of process instance-independent data series
	4.1.4 Deletion of values of process instance-independent data series
	4.1.5 runpikidata command line program

	4.2 Dimension values
	4.2.1 XML format
	4.2.2 CSV format
	4.2.3 Default and replacement values
	4.2.4 Data reimport
	4.2.5 Delete dimension values
	4.2.6 rundimdata command line program

	4.3 Data analytics

	5 How to handle large EPCs
	5.1 Import large EPCs
	5.2 Delete large EPCs

	6 Appendix
	6.1 Design of a Process Warehouse
	6.1.1 Generate process fragments
	6.1.2 Merge process fragments
	6.1.2.1 Copying the process instance attributes
	6.1.2.2 Making organizational units anonymous

	6.1.3 Typify processes
	6.1.4 Calculate measures
	6.1.5 Checking planned values

	6.2 Import scenarios
	6.2.1 Parameter values


	7 Legal information
	7.1 Documentation scope
	7.2 Support


