

ARIS PROCESS PERFORMANCE MANAGER

PPM CUSTOMIZING

OCTOBER 2024

VERSION 10.5.10 AND HIGHER

This document applies to ARIS Process Performance Manager Version 10.5.10 and to all
subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in
subsequent release notes or new editions.

Copyright © 2000-2024 Software GmbH, Darmstadt, Germany and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software GmbH product names are either trademarks or
registered trademarks of Software GmbH and/or its subsidiaries and/or its affiliates and/or
their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Detailed information on trademarks and patents owned by Software GmbH and/or its
subsidiaries is located at https://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices,
license terms, additional rights or restrictions, please refer to "License Texts, Copyright
Notices and Disclaimers of Third Party Products". For certain specific third-party license
restrictions, please refer to section E of the Legal Notices available under "License Terms and
Conditions for Use of Software GmbH Products / Copyright and Trademark Notices of
Software GmbH Products". These documents are part of the product documentation, located
at https://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically
provided for in your License Agreement with Software GmbH.

PPM CUSTOMIZING

I

Contents

Contents ... I

1 General .. 1

2 Overview .. 2
2.1 Configuration components ... 2
2.2 Command line programs ... 3
2.3 Methodological procedure .. 4
2.4 Configuration component hierarchy .. 5

3 Interface languages .. 7
3.1 User interface languages .. 7
3.2 Interface language for display of configuration elements .. 8

3.2.1 Using multi-byte character sets for configuration elements 9

4 Internal names... 11

5 Attribute types and attribute type groups... 12
5.1 Data types .. 12

5.1.1 Internal data types ... 12
5.1.2 User-defined data types ... 14

5.1.2.1 User-defined data types in multi-byte character sets 16
5.2 Definition of attribute types and attribute type groups .. 16

5.2.1 Definition of attribute types .. 17
5.2.2 Definition of attribute type groups .. 17
5.2.3 Configuration of attribute types and attribute type groups 17

5.2.3.1 Attribute type and attribute type group definition in multi-byte
character sets .. 20

6 Process merge .. 21
6.1 Process hierarchies .. 21
6.2 Key rules.. 23

6.2.1 Process key rules .. 24
6.2.2 Hierarchy key rules .. 25
6.2.3 Shared fragment key rules ... 26
6.2.4 Merge key rules ... 27

6.2.4.1 Key-based merge... 30
6.2.4.2 Merge based on sort order ... 31
6.2.4.3 Combining merge methods ... 33

6.2.5 Object key rules... 34
6.2.6 Output behavior of messages .. 35
6.2.7 Configuration file .. 35

6.3 Process fragment merge .. 37
6.3.1 Merge mode "Replace" .. 38
6.3.2 Merge mode "Update" .. 39

PPM CUSTOMIZING

II

6.4 Merge events ... 41
6.4.1 Parallel paths with multi-valued keys .. 41
6.4.2 Merge mode ... 43

6.5 Attribute copy rules ...44
6.6 Anonymizing .. 45

7 Process typification ... 48
7.1 Create typification rules ... 48

7.1.1 Measure configuration ... 48
7.1.2 Process tree configuration ... 49

7.1.2.1 Prioritization .. 50
7.1.3 Definition of attribute calculations ... 51

7.1.3.1 Calculation classes .. 55
7.1.3.1.1 Log output for calculation classes .. 56
7.1.3.1.2 Time measures ... 57
7.1.3.1.3 Function measures ... 57
7.1.3.1.4 Process measures ... 62
7.1.3.1.5 Frequency measures .. 63
7.1.3.1.6 Function measures ... 63
7.1.3.1.7 Process measures ... 65
7.1.3.1.8 Process cost rates ... 67
7.1.3.1.9 More process measures ...68
7.1.3.1.10 Environmentally relevant calculations ... 69
7.1.3.1.11 Relation measures ... 77
7.1.3.1.12 Process conformance .. 79
7.1.3.1.13 Conformance rate measure .. 79
7.1.3.1.14 Conformance issue relation .. 79
7.1.3.1.15 Convert time spans in milliseconds .. 80
7.1.3.1.16 Mark as large EPC .. 81

7.1.3.2 Operands.. 81
7.1.3.2.1 Set of values (XML element attribute) .. 81
7.1.3.2.2 Values (XML element filteredattribute) ... 84
7.1.3.2.3 Constants (XML element constant)...86
7.1.3.2.4 Determining attribute values ... 88
7.1.3.2.5 Attribute values without object reference 88
7.1.3.2.6 Attribute values with object reference .. 89

7.1.3.3 Conditional attribute type access .. 90
7.1.3.4 Operators ... 91

7.1.3.4.1 Mathematic operators .. 94
7.1.3.4.2 Operators resulting in a set of values ... 103
7.1.3.4.3 Operators producing a value ... 106
7.1.3.4.4 Logical operators .. 113
7.1.3.4.5 Conditional operator ... 125
7.1.3.4.6 String operators ... 126
7.1.3.4.7 Time operators ... 130
7.1.3.4.8 Conditional attribute type calculation .. 136

7.1.3.5 Nesting of operators ... 137
7.1.3.6 Calculation functions .. 138

PPM CUSTOMIZING

III

7.1.3.7 Change the attribute type ... 140
7.1.3.8 Summary ... 140
7.1.3.9 Example attribute calculations .. 141
7.1.3.10 Special features of attribute calculation .. 145

7.1.3.10.1 AT_INTERNAL_NO_CUBE_ENTRY function attribute 145
7.1.4 Typification rules in CTK ... 146

7.2 Typification by attribute calculation .. 147

8 Definition of measures, dimensions, attribute calculations, and relations 148
8.1 Terminology ... 148

8.1.1 Measures .. 148
8.1.1.1 Process instance-dependent measures .. 149
8.1.1.2 Process instance-independent measures (PIKIs) 150

8.1.2 Dimensions... 150
8.2 Definition of measures .. 150

8.2.1 Definition of standard measures... 152
8.2.1.1 Formatting measure values .. 155
8.2.1.2 Definition of process cost measures ... 156

8.2.2 Measure definition in multi-byte character sets ... 157
8.2.3 Definition of cardinality measures .. 158
8.2.4 Definition of process instance-independent measures 160

8.2.4.1 Usage (type) of a data series .. 166
8.2.4.2 Dimension reference ... 167
8.2.4.3 Definition of process instance-independent measures in

multi-byte character sets .. 168
8.2.4.4 Configuration import ... 169
8.2.4.5 Data series migration .. 170
8.2.4.6 Additional information: User-defined measures based on

process instance-independent measures .. 171
8.2.5 Definition of measure groups .. 172

8.2.5.1 Visible measure groups .. 176
8.2.5.2 Group of invisible measures ... 177

8.3 Definition of dimensions ... 178
8.3.1 Definition of dimension groups ... 179
8.3.2 Text dimensions ...181

8.3.2.1 General XML structure ...181
8.3.2.1.1 One-level dimension ..181
8.3.2.1.2 Two-level dimension ... 182
8.3.2.1.3 N-level dimension .. 183

8.3.2.2 Configuration .. 187
8.3.2.2.1 One-level dimensions ... 187
8.3.2.2.2 Two-level dimensions... 190
8.3.2.2.3 N-level dimensions.. 192

8.3.2.3 Import dimension values .. 193
8.3.3 Floating point dimensions .. 194
8.3.4 Time dimensions ... 195

PPM CUSTOMIZING

IV

8.3.4.1 Time dimensions for the Early alert system .. 197
8.3.4.2 Special feature for calculation of critical time attributes 197

8.3.5 Time range dimensions .. 200
8.3.6 Time of day dimensions ... 203
8.3.7 Search dimensions .. 205
8.3.8 Variant dimension... 207

8.3.8.1 Attribute configuration .. 207
8.3.8.2 Measure configuration - dimension type ... 207
8.3.8.3 Process tree configuration ... 209
8.3.8.4 Usage of variant attributes during import .. 209

8.3.9 Shared function dimension ... 209
8.3.10 Using organizational units as dimensions ... 211

8.4 Definition of data access dimensions .. 212
8.4.1 Using data access dimensions .. 213

8.5 Process tree definition .. 215
8.5.1 Registration of measures and dimensions at the PPM system 218

8.5.1.1 Register measure ... 218
8.5.1.1.1 Register relation measure ... 219
8.5.1.1.2 Register measures and dimensions of process

instance-independent data series ... 220
8.5.1.1.3 Special case: Register referenced dimensions 221

8.5.1.2 Register dimension ... 222
8.5.1.2.1 Register reference dimension ... 223
8.5.1.2.2 Register relation dimension ... 224

8.5.2 Automatic process tree expansion .. 225
8.5.3 Manual process tree expansion .. 226
8.5.4 Definition of process tree in multi-byte character sets 226

8.6 Relations .. 228
8.6.1 Definition of relations ... 228

8.6.1.1 Reference dimensions ... 230
8.6.2 Definition of relation calculations ... 231
8.6.3 Definition of relation measures .. 235
8.6.4 Definition of relation and organizational dimensions ... 237

9 Change aggregation behavior ... 239
9.1 Configure the internal aggregation attribute .. 239
9.2 Assign aggregation values .. 240

10 System connections .. 243
10.1 SAP executables .. 243

10.1.1 Software requirements .. 243
10.1.2 Privileges in the SAP system .. 243
10.1.3 Transaction call .. 243
10.1.4 Configuration .. 244

10.1.4.1 Configuration examples .. 245
10.1.4.2 Explanations regarding the DTD .. 261

PPM CUSTOMIZING

V

11 Legal information .. 266
11.1 Documentation scope ... 266
11.2 Support .. 266

PPM CUSTOMIZING

1

1 General

This manual describes the configuration of ARIS Process Performance Manager (PPM). It

provides the PPM system administrator with basic knowledge and configuration know-how to

support him in configuration for different usage scenarios and analysis tasks.

The user guide is aimed at PPM Customizing Toolkit users who are application configuration

experts.

As an application configuration expert you are responsible for customizing all ETL

processes (Extracting source system data, Transforming the data, Loading the data into the

target database), which includes process nesting, process typification, as well as measure

and dimension calculation.

Please note that this guide is not intended to replace user or configuration training. It is a

source of reference containing information that supplements the information provided in the

manuals and online help.

PPM CUSTOMIZING

2

2 Overview

Before you can import data into PPM, you need to break down the processes in the source

system to be analyzed and, on that basis, create a configuration for the PPM system. This

process is referred to as customizing. Once customizing has been completed, a set of specific

XML configuration files is available, which can be used to initialize the PPM system.

The import adapters for importing process instance fragments into the PPM database are

described in the PPM Data Import manual.

2.1 Configuration components

Configuration components are divided into the following categories:

INTERFACE LANGUAGES

PPM differentiates between two categories of interface languages: the user interface

language and the language for displaying database contents that have been imported using

the configuration files.

DATA TYPES

In PPM, a distinction is made between internal and user-defined data types. Internal data

types cannot be changed. An XML file can be used to import any number of new data types

into the PPM system.

SPECIFIC PPM ATTRIBUTES

Attributes are the information carriers of the PPM system. Attribute values allow data from

the source system to reach the PPM system. Calculation results are also saved as attributes.

PPM is supplied with a comprehensive set of default attributes, which can be supplemented

with user-defined attributes.

PROCESS KEY RULES

Process key rules determine how process keys are calculated.

Process keys identify associated process instance fragments. Associated process instance

fragments are written into a process instance unlinked using the process keys. Process keys

are created when importing the process instance fragments.

PPM CUSTOMIZING

3

MERGE KEY RULES

Merge key rules determine the attributes used by PPM to create merge keys when importing

the process instance fragments. When merging events (event merge), the merge events with

an identical merge key are used to link the process instance fragments.

OBJECT KEY RULES

Object key rules determine how object keys are calculated.

Object keys identify identical objects. This ensures that these objects are overwritten if the

data is imported again and rules out unintentional multiple occurrences of identical objects

within a process instance.

ATTRIBUTE COPY RULES

Attribute copy rules define the object attributes that are copied to the merged process

instance after the merge process. These attributes are required to calculate process

measures and to create dimensions.

TYPIFICATION RULES

With typification rules, the imported process instances are allocated to a particular process

type.

MEASURE DEFINITION

The measure definition is made up of the definition of the measures (type and calculation

rule) and the definition of a process tree.

PPM already contains the calculation rule for many standard measures and a default process

tree. If you require further measures, you can define supplementary indicators and their

calculation.

2.2 Command line programs

After creation of the configuration files, the source system data is imported into the PPM

system as follows:

Process PPM command Documentation

Initialize PPM

database

runinitdb -init -client

<client>

PPM Operation

Guide

PPM CUSTOMIZING

4

Process PPM command Documentation

Import process

instance fragments

(XML import

 adapter or other

import adapter)

runxmlimport -client

<client> -user ...

PPM data import

Create process

instances from

imported process

instance

fragments, typify

process instances

and calculate

measures

runppmimport -client

<client> ...

PPM Operation

Guide

After the process instances have been imported and calculated, they can be analyzed and

evaluated in the PPM system front-end.

2.3 Methodological procedure

Before you start to create the PPM configuration files, you must define the source system

activity flows or processes you are analyzing and the variables you want to use. The

information required to calculate and process the process instances is identified in the source

system (values for process merging, typification and measure calculation).

The procedure for extracting data from the source system and storing the process instance

fragments in the PPM system is defined by configuring the relevant PPM import adapter.

Importing XML data into the PPM system is described in detail in the technical reference PPM

Data Import.

If all of the required source system information is known, an assignment of source system

information carriers to PPM attributes is created. Depending on the desired analysis results

data types and attributes for the measures are determined, along with their calculation rules

and attributes for the creation of dimensions.

PPM CUSTOMIZING

5

2.4 Configuration component hierarchy

The table below shows the assignment of XML configuration files to the PPM components.

PPM component XML file (in the xml directory of the default
client templates)

Process tree *_processtree.xml

Measure calculation *_keyindicator.xml

*_kigroup.xml

Creation of keys and

merge

*_keyrules.xml

*_merger.xml

Fragment definition and

mapping

No default files. Files must be created using

PPM Customizing Toolkit.

Attributes *_attributetypes.xml

*_attributenames_<language>.xml (one file

for each language)

Data types *_datatypes.xml

Interface languages *_locales.xml

Then default client templates of the PPM system are stored under <PPM installation

directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-run

-prod-<version>-runnable.zip\ppm\ctk\ctk\examples\custom\.

PPM CUSTOMIZING

6

The graphic below illustrates the dependencies between the different PPM configuration

components.

When initializing the PPM database, ensure that the configuration steps are performed in the

correct sequence:

1. Languages

2. Data types

3. Attributes

4. Process merge and typification

5. Measure calculation

6. Process tree

PPM CUSTOMIZING

7

3 Interface languages

PPM differentiates between two categories of interface languages: the user interface

language, which is used for menu items, dialog boxes, etc., and the language for displaying

configuration elements (measure names, dimensions, etc.).

Data that has been imported by importing process instance fragments into the PPM system is

always displayed in the source system language, regardless of the selected interface

language.

3.1 User interface languages

The user sets the user interface language when logging into the system.

PPM supports English and German interface texts for menu items, dialog boxes, etc. The

interface texts are contained in the code for the PPM software.

Warning

In order to be able to use PPM in multiple languages, an international version of Java Runtime

Environment (JRE) must be installed.

The languages available for selection in the Login dialog can be set separately for each PPM

client in the file *_locales.xml. The file is structured as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE locales SYSTEM "Locales.dtd">
<locales>
 <defaultlocale value="en" />
 <locale value="de" />
 <locale value="fr" />
</locales>

If the language for the specified language code cannot be determined, for example, an

unknown language code is entered in a login URL, the default language is used:

http://<Web server>/ppm/html/index.html?language=1234

You can only specify one of the languages available for the user interface as the default

language.

PPM CUSTOMIZING

8

The XML configuration file *_locales.xml is defined by the following DTD:

3.2 Interface language for display of configuration
elements

All PPM interface elements that are based on configuration files (name of measures, measure

groups and dimensions) can be specified in any language. The naming of elements in the

different languages is defined by the description XML element, which is used in all XML

configuration files. In addition, a language-specific description can be added for each of these

interface elements, which is displayed as a tooltip in the front-end.

DTD for XML element description (file _description.dtd):

Example

Extract from the XML measure configuration:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <kidef name="PNUM" type="PROCESS" attrname="AT_KI_PNUM"
 calculated="TRUE" distribution="FALSE"
 standarddeviation="FALSE" retrievertype=
 "NUM_KEYINDICATOR" sharedfunctionki="FALSE"
 functionspanki="FALSE" dimreferring="LOOSE"
 importmode="OPTIONAL">
 <description language="de" name="Prozessanzahl">
 Anzahl der tatsächlich durchlaufenen Prozesse
 </description>

PPM CUSTOMIZING

9

 <description language="en" name="Number of processes">
 Number of processes actually passed through
 </description>
 </kidef>
 ...
</keyindicatorconfig>

The content of the text specified in the #PCDATA tag of the relevant description element is

displayed as a language-specific tooltip in the PPM interface.

Warning

To configure the PPM system successfully, you must enter at least the description in the

default language for every configuration element.

Depending on the PPM login language used, the dialog boxes in the PPM front-end show the

language-specific name of the configuration elements, for example in the process attribute

dialog box the names of attribute type groups and attribute types. The language-specific

names are defined in XML configuration files.

3.2.1 Using multi-byte character sets for configuration
elements

PPM supports the display of source system data and certain configuration elements using

local character sets that are not included in the ANSI character set and are coded with a

multi-byte character set (MBCS). Examples are Japanese Kanji and Greek characters.

All XML files imported into the PPM system and not based on the character set for a Western

European language, must reference the UTF-8 character set as encoding:

<?xml version="1.0" encoding="UTF-8"?>
<...>
...
</...>

In principle, tooltips and all language-specific names displayed in the PPM user interface can

be displayed using a multi-byte character set. Specifically, this applies to the following

elements:

 Attribute types

 Attribute type groups

 Measures

 Measure groups

 Dimensions

PPM CUSTOMIZING

10

 Process instance-independent measures (PIKIs)

 Process types

 Process type groups

Furthermore, the language-specific names of user-defined data types can be entered using a

multi-byte character set.

For attribute types and attribute type groups, the internal names (key XML attribute) can also

be configured with a multi-byte character set.

PPM CUSTOMIZING

11

4 Internal names

In the PPM configuration files, configuration elements are referenced using a unique,

language-independent internal name. This table shows the XML attributes that define the

internal name.

PPM configuration element XML attribute

Attributes key

Data types name

Dimensions name

Measures name

Calculation functions

(for example, typification rules)

name

Warning

Internal names are used to reference configuration elements. The internal name of an object

in a process instance is specified in the AT_OBJNAME_INTERN object attribute.

Internal names begin with a letter and consist of capital letters with no special characters

(A-Z), figures (0-9), and the _ (underscore) character.

In practice, the following guidelines for creating internal names have proved useful:

PPM configuration element Prefix

Attribute names AT_

Attribute group names AG_

Measure groups KI_GROUP_

Dimension groups DIM_GROUP_

Measure attributes AT_KI_

Measure names KI_

Dimension names D_

Typification rules TYP_

PPM CUSTOMIZING

12

5 Attribute types and attribute type groups

Attributes are the data repository of the PPM system. Attributes with a corresponding data

type must be defined for instance data extracted, all measures and all dimensions. Attributes

can be summarized into attribute groups.

5.1 Data types

In PPM, a distinction is made between internal and user-defined data types.

5.1.1 Internal data types

The PPM system provides the following internal data types. These cannot be changed.

Data type Example
(Description)

Units or scaling
levels

Units (Description)

BOOLEAN "true" - -

TEXT "Example text"

String

- -

TEXTPAIR "Text 1\Text 2"

2 strings separated

by a

backslash

LEVEL1SCALE

LEVEL2SCALE

Rough level

Detailed level

LONG "-231456789"

Integers

- -

DOUBLE "3.1428"

Floating point

numbers separated

by a

decimal point

- -

PPM CUSTOMIZING

13

Data type Example
(Description)

Units or scaling
levels

Units (Description)

DAY "24.03.2003"

Date in the format

dd.MM.yyyy

DAYSCALE

WEEKSCALE

MONTHSCALE

QUARTERSCALE

YEARSCALE

No unit, but levels of

accuracy:

correct to day

correct to week

correct to month

correct to quarter

correct to year

TIME "01.01.2002

08:15:23"

Date and time in the

format

dd.MM.yyyy

hh:mm:ss

The data type is

identical to the data

types DATE and

TIMESTAMP

SECONDSCALE

MINUTESCALE

HOURSCALE

DAYSCALE

WEEKSCALE

MONTHSCALE

QUARTERSCALE

YEARSCALE

No unit, but levels of

accuracy:

correct to second

correct to minute

correct to hour

correct to day

correct to week

correct to month

correct to quarter

correct to year

TIMEOFDAY "12:41:56"

Time of the day in

format hh:mm:ss

SECOND_OF_DAY

_SCALE

MINUTE_OF_DAY

_SCALE

HOUR_OF_DAY

_SCALE

No unit, but levels of

accuracy:

correct to second

correct to minute

correct to hour

TIMESPAN "23 SECOND"

Time span

SECOND

MINUTE

HOUR

DAY

WEEK

MONTH

YEAR

Second

Minute

Hour

Day

Week

Month

Year

PPM CUSTOMIZING

14

Data type Example
(Description)

Units or scaling
levels

Units (Description)

FACTORY TIMESPAN "23

FACTORY_HOUR"

Time span based on

the factory calendar.

Only the pure

working time is

taken into account.

FACTORY_SECOND

FACTORY_MINUTE

FACTORY_HOUR

FACTORY_DAY

FACTORY_WEEK

FACTORY_MONTH

FACTORY_YEAR

Person-second

Person-minute

Person-hour

Person-day

Person-week

Person-month

Person-year

FREQUENCY "86400 PER_DAY"

Number per unit of

time

PER_SECOND

PER_MINUTE

PER_HOUR

PER_DAY

PER_WEEK

PER_MONTH

PER_YEAR

per second

per minute

per hour

per day

per week

per month

per year

PERCENTAGE "63 PERCENT"

Percentage

PERCENT

VALUE_ONLY

Percent

no unit (factor display)

For the time-based data types, the base unit is always seconds. The PERCENTAGE data type

does not have a base unit.

Warning

The TEXTPAIR data type is used internally by PPM to process binary query results (for

example, process type group\process type). This data type is not suitable for direct data

exchange, as the backslash (\) separator is replaced by the slash (/) character when

importing an XML file.

5.1.2 User-defined data types

An XML file can be used to import any number of new data types into the PPM system. The

following example file creates a new Costs data type (internal name COST) with a base unit

of Euros (EUR) and the additional unit of Dollars (USD) with a corresponding conversion

factor.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE datatypelist SYSTEM 'userdefdatatypes.dtd'>

PPM CUSTOMIZING

15

<datatypelist>
 ...
 <!-- Data type: Costs -->
 <datatype name="COST">
 <description language="de" name ="Kosten"/>
 <description language="en" name ="Costs"/>
 <basescale name="EUR">
 <description language="de" name="EUR"/>
 <description language="en" name="EUR"/>
 </basescale>
 <scale name="USD" factor="0.9">
 <description language="de" name="US Dollar"/>
 <description language="en" name="US Dollars"/>
 </scale>
 </datatype>
 ...
</datatypelist>

Document type definition of the XML file for the definition of new PPM data types (file

userdefdatatypes.dtd):

IMPORT AND EXPORT OF USER-DEFINED DATA TYPES

You perform the import and export of user-defined data types by executing the command

runppmconfig with the option -datatypes on the PPM server computer (see PPM Operation

Guide). When importing, the internal name (datatype name XML tag) of the data type to be

imported is checked. If a data type with the same name already exists in the PPM system, this

data type is not imported and a corresponding message is output.

Once imported, user-defined data types cannot subsequently be deleted from the PPM

system. It is possible to overwrite their definition only by specifying the -overwrite option in

the runppmconfig command line program.

PPM CUSTOMIZING

16

5.1.2.1 User-defined data types in multi-byte character
sets

The following extract from the XML configuration file for data types shows an example of the

definition options for a user-defined data type when using a multi-byte character set:

Example with base scaling and one other scaling:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE datatypelist SYSTEM "userdefdatatypes.dtd">
<datatypelist>
...
<datatype name="COST">
<description language="en" name="Costs"/>
<description language="en" name="Costs" />
<description language="el" name="έξοδα"/>
 <basescale name="EUR">
 <description language="de" name="EUR"/>
 <description language="en" name="EUR"/>
 <description language="el" name="ΕYP"/>
 </basescale>
 <scale factor="0.001" name="TEUR">
 <description language="de" name="TEUR" />
 <description language="en" name="EUR Thousands" />
 <description language="el" name="Χ.EYP"/>
 </scale>
</datatype>
...
</datatypelist>

You can also carry out the user-specific configuration of the file DataTypes.xml using PPM

Customizing Toolkit.

5.2 Definition of attribute types and attribute type
groups

All attribute types and attribute type groups known to the PPM system are defined in the XML

configuration files *_AttributeNames_<language>.xml and *_AttributeTypes.xml.

Specify id="auto" in the attribute type definition if you want attribute type identifiers or

attribute type group identifiers to be automatically generated during the import.

PPM CUSTOMIZING

17

5.2.1 Definition of attribute types

Attributes are defined by specifying a unique identifier (id XML attribute), a unique internal

name (key XML attribute) and a data type (type XML attribute). Attributes can optionally be

assigned to an attribute group (group XML attribute).

The identifiers up to 500 are internally reserved for default attributes. These cannot be used

for configuration.

5.2.2 Definition of attribute type groups

Attribute groups are defined by specifying a unique identifier (id XML attribute) and a unique

internal name (key XML attribute).

The optional specification of the internal name of the superordinate attribute type group

(group XML attribute) allows attribute type groups to be arranged in a tree structure.

The internal name (key XML attribute) is stated in the subsequent name.

Use the AG_INVISIBLE attribute group pre-assigned by the system for attributes you do not

want to be displayed in the PPM user interface in the Object attributes or Process

attributes dialog box in the EPC view .

By default, this attribute group is not defined.

5.2.3 Configuration of attribute types and attribute type
groups

The XML configuration files *_AttributeNames_<language>.xml and

*_AttributeTypes.xml are defined by the following document type definitions:

ATTRIBUTETYPES.DTD

PPM CUSTOMIZING

18

ATTRIBUTENAMES.DTD

The language-specific attribute names are assigned to the attribute definition using the

attribute names (key XML attribute).

The files *_attributetypes.xml and *_attributenames.xml are used to define a PPM

attribute and an attribute group.

XML FILE *_ATTRIBUTETYPES.XML

The file contains the following information:

Attribute type group:

 Unique attribute type group identifier (optional)

 Unique attribute type group name (optional)

 Attribute type group name for higher level group (optional)

Attribute type:

 Unique identifier (number above 501)

 Unique name

 Data type

 Attribute type group (optional)

The following file extract shows the definition of a default attribute type and a user-defined

attribute type:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE attributetypes SYSTEM "attributetypes.dtd">
<attributetypes>
 ...
 <groupdefinition id="2" key="AG_MERGER"
 group="AG_INTERNAL"/>
 ...
 <groupdefinition id="5" key="AG_COSTING"/>
 ...
 <attributedefinition key="AT_EPK_KEY"

PPM CUSTOMIZING

19

 type="TEXT" group="AG_MERGER" />
 ...
 <attributedefinition id="1000" key="AT_LS"
 type="TIMESPAN" group="AG_COSTING"/>
 ...
</attributetypes>

XML FILE *_ATTRIBUTENAMES.XML

The file contains the following information:

 Language-specific attribute type names

 Language-specific attribute type group names

You must create a separate attribute type name and attribute type group configuration file

for each PPM interface language you want to use.

The following extract from the file *_attributenames_de.xml contains the attribute type

names in German:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE attributenames SYSTEM "attributenames.dtd">
<attributenames language="de">
 ...
 <group key="AG_MERGER" name="Merger"/>
 ...
 <attribute key="AT_EPK_KEY" name="EPK-Schlüssel"/>
 ...
</attributenames>

The following extract from the file *_attributenames_en.xml contains the attribute type

names in English:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE attributenames SYSTEM "attributenames.dtd">
<attributenames language="en">
 ...
 <group key="AG_MERGER" name="Merge"/>
 ...
 <attribute key="AT_EPK_KEY" name="EPC key"/>
 ...
</attributenames>

PPM CUSTOMIZING

20

5.2.3.1 Attribute type and attribute type group definition
in multi-byte character sets

The following extracts from the XML configuration files for attribute type definitions show

examples of the definition options for user-defined attribute types and attribute type groups

when using a multi-byte character set.

ENTRIES IN THE FILE ATTRIBUTETYPES.XML:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE attributetypes SYSTEM "attributetypes.dtd">
<attributetypes>
...
<attributedefinition id="5013" key="ΙΔ_ΧΡ_ΕΠΕΞ"
 type="TIMESPAN" group="ΣΥΝ_ΙΔ_ΔΕΙΚΤ_ΧΡΟΝ"/>
...
</attributetypes>

CORRESPONDING ENTRIES IN THE FILE ATTRIBUTENAMES_EL.XML:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE attributenames SYSTEM "attributenames.dtd">
<attributenames language="el">
 ...
 <attribute key="ΙΔ_ΧΡ_ΕΠΕΞ" name="χρόνος επεξεργασίας"/>
 ...
 <group key="ΣΥΝ_ΙΔ_ΔΕΙΚΤ_ΧΡΟΝ" name="δείκτης χρόνου"/>
 ...
</attributenames>

PPM CUSTOMIZING

21

6 Process merge

In order to be able to merge the imported fragments into complete process instances, you

require information from the source system, which PPM uses to identify the fragments

belonging to a process instance and to reconstruct the time sequence of the fragments

(process logic).

The process merge runs in two stages.

Procedure

1. All fragments belonging to a process instance are identified and collected into a process

instance (process merge).

2. The unlinked fragments of a process instance are linked to one another (event merge).

The event merge can be either key based or based on sort order.

6.1 Process hierarchies

Similar to the assignments in ARIS, subordinate process instances can be assigned to

functions in PPM. In the EPC view, these functions are given the assignment symbol familiar

from ARIS. The assigned process instance can be displayed using the Open assignment

option in the pop-up menu for the function.

PPM CUSTOMIZING

22

The chart below illustrates the hierarchical refinement of a process instance:

Each assigned process instance is a separate process instance. The process hierarchy only

represents an assignment between process instances. It can have any level of detail. All

process instances within a refinement make up a hierarchy structure. Each process instance

involved in this hierarchy structure is on a different hierarchy level.

A process instance may not be assigned to multiple functions within a hierarchy structure, as

the multiple consideration of attribute values can lead to incorrect results in the measure

calculation.

Warning

When setting up a hierarchy structure for your processes, ensure that each process instance

within the hierarchy structure is assigned to a different process type group.

Each function to which a process instance is assigned represents the subordinate process

instance. The AT_INTERNAL_HIER_REF function attribute is a unique reference to the

subordinate process instance. The value of the hierarchy key for the subordinate process

instance corresponds to the value of the AT_INTERNAL_HIER_REF function attribute. The

value of the function attribute is extracted from the source system adapter.

PPM CUSTOMIZING

23

Warning

The AT_INTERNAL_HIER_REF function attribute cannot be changed later. When setting up

process hierarchies, the attribute value at the time of importing is decisive.

The process attributes of the assigned process instance are copied to the function of the

higher-level process instance as part of measure calculation in addition to the existing

function attributes. Existing attributes of the function are overwritten by attributes of the

assigned process instance with the same name. If different measures are calculated for the

assigned process instance due to assignment to a different process type when processing

the imported process instance fragments (runppmimport), the attributes already copied to

the function of the higher level process instance are not deleted and continue to be included

in analyses. The function also retains the copied attributes if the assigned process instance is

deleted.

To delete the copied attributes for functions with an assigned process instance, you need to

re-import the process instance fragments for the higher-level process instance. Appropriate

object key rules ensure that the functions are overwritten when the import is repeated.

6.2 Key rules

The key rules are divided into five categories according to their purpose:

Category XML element Description

Process key

rules

processkeyrule Merge associated

fragments in a

process instance

Hierarchy

key rules

hierarchykeyrule Creation of process

hierarchies

Shared fragment

key rules

sharedfragmentkeyrule Copying shared

fragments in process

instances

Merge key

rules

mergekeyrule Combine merge

events within a

process instance

Object key

rules

internalobjectkeyrule Identification of

identical objects

PPM CUSTOMIZING

24

Warning

Do not use leading or trailing whitespace characters (such as a blank space or a tab) in keys

created by key rules, in attributes that contribute to key rules, or in attributes that refer to any

of the keys (for example, AT_INTERNAL_HIER_REF).

6.2.1 Process key rules

Process keys uniquely assign process instance fragments to a process instance. Process

instance fragments with identical process keys are written unlinked to a process instance.

Process keys can be created efficiently by selecting process instance-specific attribute

values (for example, Order number or Processing number).

When importing, at least one process key must be created for each process fragment.

Example

The file extract defines a process key rule, which uses the AT_AUFTRAGSNUMMER attribute

type for the EVT_START and EVT_END events to create the process key.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyrules SYSTEM "keyrules.dtd">
<keyrules>
 ...
 <processkeyrule>
 <refobjects>
 <refobject objecttype="OT_EVT">
 <objectname name="EVT_START"/>
 <objectname name="EVT_END"/>
 </refobject>
 </refobjects>
 <keyparts>
 <keypart attributetype="AT_AUFTRAGSNUMMER"/>
 </keyparts>
 </processkeyrule>
 ...
</keyrules>

Warning

Process fragment instances, for which no process key can be calculated, are not imported as

they cannot be assigned to a process instance. A warning message is output.

RETAIN ALL PROCESS ATTRIBUTES WHEN MERGING

By default, when merging two process instances only the process attributes of the most

recent fragment (imported later) are retained in the resulting fragment.

When merging two process instance fragments, if the combined set of process attributes for

both fragments is to be transferred to the merged fragment, you need to overwrite the

PPM CUSTOMIZING

25

default behavior by specifying the ZRetainingProcessAttributesPMAlgo class. The

following file extract illustrates the merge configuration:

...
<mergerconfig>
 <mergehandling>
 <processmerge>
 <algorithm classname="com.idsscheer.ppm.server.
 merger.merger.impl.ZRetaining
 ProcessAttributesPMAlgo"/>
 </processmerge>
 ...
 </mergehandling>
</mergerconfig>
...

The Java class used is a component of the standard PPM installation.

6.2.2 Hierarchy key rules

Hierarchy key rules assign process instances to a higher-level function and are used to create

process hierarchies (see chapter Process hierarchies (page 21)). They can be shown as

process hierarchy keys in the detailed view of the process instance.

The hierarchy key rules are applied to all imported process instances.

Example

For the functions with the identifiers FCT_ANGEBOT_ERSTELLEN, FCT_AUFTR_ANLEGEN

and FCT_RECHNG_ERSTELLEN a hierarchy key rule is generated that creates a hierarchy

key from the values of the AT_AUFTRAGSNUMMER, AT_RECHNUNGSNUMMER and

AT_ANGEBOTSSNUMMER attributes.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyrules SYSTEM "keyrules.dtd">
<keyrules>
 ...
 <hierarchykeyrule>
 <refobjects>
 <refobject objecttype="OT_FUNC">
 <objectname name="FCT_ANGEBOT_ERSTELLEN"/>
 <objectname name="FCT_AUFTR_ANLEGEN"/>
 <objectname name="FCT_RECHNG_ERSTELLEN"/>
 </refobject>
 </refobjects>
 <keyparts>
 <keypart attributetype="AT_AUFTRAGSNUMMER"/>
 <keypart attributetype="AT_RECHNUNGSNUMMER"/>
 <keypart attributetype="AT_ANGEBOTSSNUMMER"/>
 </keyparts>

PPM CUSTOMIZING

26

 </hierarchykeyrule>
 ...
</keyrules>

6.2.3 Shared fragment key rules

Shared fragment keys assign shared fragments to process instance fragments. Shared

fragments are special process fragments, which contain exclusively functions involved in

several process instances. As these functions are only executed once in the source system

but occur in several process instances, they are called shared functions.

Shared fragments are imported in graph format using the XML import. The definition of the

graph for a shared fragment contains the AT_IS_SHARED_FRAGMENT process instance

attribute with the value TRUE. All functions of a shared fragment must be identified as shared

functions by the value TRUE for the AT_IS_SHARED_FUNCTION function attribute. During

importing, at least one shared fragment key is calculated for each imported shared fragment.

Shared fragments for which no key can be calculated are not imported.

The shared fragment key rules are applied to all imported process instance fragments. During

subsequent processing (rumppmimport) all fragments (shared fragments and process

instance fragments) for which identical shared fragment keys have been calculated are

written to a process instance and then linked using the merge rules.

The shared fragment key copies the shared fragments to a process instance. To link shared

fragments with one another or with normal process instance fragments, appropriate rules are

specified, which depend on the merge procedure used.

You can use a shared fragment key only once for copying a process fragment to a process

instance. After the first use, the key is removed from the process instance. Therefore, copies

of shared fragments are not updated in a process instance when a shared fragment changes.

Example

A shared fragment key rule is created for the events with the identifiers EVT_ACE and

EVT_GIK, which generates a shared fragment key from the value of the AT_XYZ attribute.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyrules SYSTEM "keyrules.dtd">
<keyrules>
 ...
 <sharedfragmentkeyrule>
 <refobjects>
 <refobject objecttype="OT_EVT">
 <objectname name="EVT_ACE"/>
 <objectname name="EVT_GIK"/>
 </refobject>
 </refobjects>

PPM CUSTOMIZING

27

 <keyparts>
 <keypart attributetype="AT_XYZ"/>
 </keyparts>
 </sharedfragmentkeyrule>
 ...
</keyrules>

6.2.4 Merge key rules

Merge key rules are used for merging merge events within a process instance. In this way, the

process instance fragments assigned using process keys are linked to form a process

instance.

Merge keys are calculated from particular object attributes of the process instance fragment.

They are used to reconstruct the process logic of the process instance and the unlinked

fragments are linked accordingly.

PPM differentiates between two merge procedures:

 Key-based merge

 Merge based on sort order

The relevant merge procedure is specified in the XML configuration file *_merger.xml. The

structure of this file is specified by the DTD mergerconfig.dtd.

FILE MERGERCONFIG.DTD (PART 1)

<!ELEMENT mergerconfig (mergehandling, connectorhandling?)>
<!ELEMENT mergehandling (sharedfragmentmerge?, processmerge?, eventmerge+
)>
<!ATTLIST mergehandling eventmode (startevent | endevent | importtime)
"importtime">
<!ELEMENT sharedfragmentmerge (algorithm)>
<!ELEMENT processmerge (algorithm?, mergeattributes?)>
<!ATTLIST processmerge

mode (replace|update) 'replace'>
<!ELEMENT eventmerge (mode, condition?, algorithm?)>
<!ATTLIST eventmerge

key ID #IMPLIED
priority CDATA #IMPLIED>

<!ELEMENT condition EMPTY>
<!ATTLIST condition

classname NMTOKEN #REQUIRED
value (TRUE|FALSE) 'TRUE'
comment CDATA #IMPLIED>

<!ELEMENT algorithm EMPTY>
<!ATTLIST algorithm

classname NMTOKEN #REQUIRED
comment CDATA #IMPLIED>

PPM CUSTOMIZING

28

<!ELEMENT mergeattributes (attribute+)>
<!ELEMENT attribute EMPTY>
<!ATTLIST attribute

key CDATA #REQUIRED>
<!ELEMENT mode (keymerge | sortmerge)>
<!ELEMENT keymerge EMPTY >
<!ELEMENT sortmerge (criterion*, algorithm?)>
<!ELEMENT criterion EMPTY>
<!ATTLIST criterion

name NMTOKEN #REQUIRED>

XML tag Description

mergerconfig Grouping of merge configuration

mergehandling Merge type to be configured. At least the

eventmerge element must be specified.

sharedfragmentmerge

(optional)

Algorithm differing from the default algorithm

for merging the shared fragments with

process instance fragments

processmerge

(optional)

Algorithm differing from the default algorithm

for merging the process instance fragments.

Available for selection are the modes Replace

or Update. The default value is Replace.

eventmerge Algorithm differing from the default algorithm

for merging the merge events

key

(optional)

ID that can be used to reference the

eventmerge element.

priority

(optional)

Priority of the eventmerge element – the

lower the integer value, the higher the

priority.

condition

(optional)

Condition for merging of merge events

classname Name of JAVA class, which checks the

specified condition

value

(optional)

Condition is met if checking by the JAVA

class returns the specified value (TRUE or

FALSE). The default value is TRUE.

PPM CUSTOMIZING

29

XML tag Description

algorithm

(optional)

Calculation rule (JAVA class)

classname JAVA class that implements a particular

calculation rule

mode Merge procedure for event merging

keymerge Key-based event merge based on defined

merge keys

sortmerge Event merge based on sort order of functions

criterion Criterion (function attribute) to be used as a

basis for sorting the fragments. Multiple

criteria can be specified.

name Name of function attribute

FILE MERGERCONFIG.DTD (PART 2)

<!ELEMENT connectorhandling (multiindegreehandling?,
multioutdegreehandling?, andhandling?, orhandling?, xorhandling?)>
<!ELEMENT multiindegreehandling (algorithm) >
<!ELEMENT multioutdegreehandling (algorithm) >
<!ELEMENT andhandling (algorithm) >
<!ELEMENT orhandling (algorithm) >
<!ELEMENT xorhandling (algorithm) >

XML tag Description

connectorhandling

(optional)

Handling of connectors in process graphs

by specifying a JAVA class (algorithm)

multiindegreehandling

(optional)

Algorithm, which controls the inserting of

connectors with multiple incoming

connections for the object merge

multioutdegreehandling

(optional)

Algorithm, which controls the inserting of

connectors with multiple outgoing

connections for the object merge

andhandling

(optional)

Algorithm for handling of AND connectors

PPM CUSTOMIZING

30

XML tag Description

orhandling

(optional)

Algorithm for handling of OR connectors

xorhandling

(optional)

Algorithm for handling of XOR connectors

Example

For linking process instance fragments, the key-based event merge is used.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE mergerconfig SYSTEM "mergerconfig.dtd">
<mergerconfig>
 ...
 <mergehandling>
 <eventmerge>
 <mode>
 <keymerge/>
 </mode>
 </eventmerge>
 </mergehandling>
 ...
</mergerconfig>

During the event merge, the combined set of attributes of both merge events is copied to the

remaining event. Existing object attributes are not overwritten. The first merge event

imported is deleted.

6.2.4.1 Key-based merge

The key-based merge is used to merge events with identical merge keys. The first merge

event imported is deleted and the number of identical merge keys is reduced. The merge

process is repeated until no more identical merge keys are found within the current process

instance.

Merge key rules are defined in the XML file KeyRules.xml. This is done by specifying the

attributes of a fragment event involved in the creation of the merge key. The merge key itself

is created by combining the specified attribute values.

EXAMPLE

The file extract below defines a merge key rule, which uses the internal object name of the

event (AT_OBJNAME_INTERN attribute type) to create the merge key for the start and end

event in a process instance fragment. As several fragments with the same fragment

PPM CUSTOMIZING

31

definition can occur in a process instance, the merge key is extended to include the value of

the AT_END_TIME attribute.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyrules SYSTEM "keyrules.dtd">
<keyrules>
 ...
 <processkeyrule>
 ...
 </processkeyrule>
 ...
 <mergekeyrule>
 <refobjects>
 <refobject objecttype="OT_EVT">
 <objectname name="EVT_START"/>
 <objectname name="EVT_END"/>
 </refobject>
 </refobjects>
 <keyparts>
 <keypart attributetype="AT_OBJNAME_INTERN"/>
 <keypart attributetype="AT_END_TIME"/>
 </keyparts>
 </mergekeyrule>
 ...
</keyrules>

6.2.4.2 Merge based on sort order

The merge based on sort order merges events based on particular sort criteria. Any number of

sorting criteria can be specified in the form of function attribute types. The following event

for a function is merged with the predecessor event of the following function.

By default, alphanumeric and chronological sorting procedures are implemented in PPM. The

method used is specified by the data type of the specified sorting criterion.

An example of a sorting criterion could be the AT_END_TIME function attribute with the

TIME data type.

In a merge based on sort order, the imported process instance fragments may not contain

rules. Process instance fragments with sequential functions are divided into minimal EPCs

(event-function-event).

Warning

Make sure that the sorting criterion you defined is available at each function of the instances

to be merged and includes the corresponding values.

In PPM 4.0 and above, you can use both merge methods in a client configuration.

PPM CUSTOMIZING

32

Example

The AT_END_TIME function attribute is used for the merge based on sort order. The time

stamp must be specified for each function of the instance.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE mergerconfig SYSTEM "mergerconfig.dtd">
<mergerconfig>
 ...
 <mergehandling>
 <eventmerge>
 <mode>
 <sortmerge>
 <criterion name = "AT_END_TIME" />
 </sortmerge>
 </mode>
 </eventmerge>
 </mergehandling>
 ...
</mergerconfig>

If the sort attribute for several functions has the same value, AND rules are used to create

parallel paths in the merged process instance.

Example

As the sort criterion used (AT_END_TIME) returns an identical value for the two functions

FCT 1 and FCT 2, AND rules are used to create a parallel path in the merged process instance.

PPM CUSTOMIZING

33

6.2.4.3 Combining merge methods

In order to be able to merge fragments using different methods, you need to define multiple

merge methods. To do this, the key and priority attributes are added to the merger

configuration (eventmerge XML element).

The value of the key attribute specifies the name of the merge method and is referenced by

the AT_INTERNAL_EVENT_MERGE_MODE graph attribute for fragments to be imported. If

fragments with different merge methods are merged during an import operation, the method

with the lowest priority (priority XML element) is used.

The default merge method is used for fragments for which the

AT_INTERNAL_EVENT_MERGE_MODE attribute is not specified. The default method is the

one that is defined in the merge configuration without specifying a key.

Warning

Specify different priorities for all merge methods.

To specify the merge method to be used for different system event types, specify the key for

the relevant merge method in the AT_INTERNAL_EVENT_MERGE_MODE process attribute

for the fragment definition EPCs. All system events imported with this fragment definition are

then automatically merged using the specified method.

Warning

If the merge method specified in the fragment to be imported does not exist, the fragment is

not imported and an error message is displayed. The error message is also saved in the

AT_MERGE_ERROR_MESSAGE attribute for the corresponding fragment. In addition, the

value true is entered for the AT_MERGE_ERROR_FLAG attribute.

Example

The following merge configuration is used for the data import and defines 3 methods:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE mergerconfig SYSTEM "mergerconfig.dtd">
<mergerconfig>
 <mergehandling>
 <eventmerge priority="10">
 <mode>
 <keymerge/>
 </mode>
 </eventmerge>
 <eventmerge key="SORTMERGE_ID" priority="3">
 <mode>
 <sortmerge>
 <criterion name = "AT_ID" />
 </sortmerge>
 </mode>
 </eventmerge>
 <eventmerge key="SORTMERGE_DATE" priority="4">

PPM CUSTOMIZING

34

 <mode>
 <sortmerge>
 <criterion name = "AT_START_TIME" />
 </sortmerge>
 </mode>
 </eventmerge>
 </mergehandling>
</mergerconfig>

Fragments without the AT_INTERNAL_EVENT_MERGE_MODE attribute are merged using

the key-based merge method. Fragments with the attribute value SORTMERGE_ID are

merged based on sort order according to the AT_ID function attribute. Fragments with the

attribute value SORTMEGRE_DATE are merged based on sort order according to the

AT_START_TIME function attribute.

6.2.5 Object key rules

Object key rules are used when re-importing data to identify and overwrite identical objects.

Two event or function objects are identical if the same object key has been calculated for

them. If objects are identified as being identical, the last object imported overwrites the

previously imported object. The process logic of the process instance is modified accordingly.

The calculated object key is written to the corresponding object as the

AT_INTERNAL_OBJECT_KEY attribute type.

Example

For all functions, the object key is created from the values of the AT_OBJNAME_INTERN and

AT_END_TIME attributes.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyrules SYSTEM "keyrules.dtd">
<keyrules>
 ...
 <processkeyrule>
 ...
 </processkeyrule>
 ...
 <internalobjectkeyrule>
 <refobjects>
 <refobject objecttype = "OT_FUNC" />
 </refobjects>
 <keyparts>
 <keypart attributetype="AT_OBJNAME_INTERN"/>
 <keypart attributetype="AT_END_TIME"/>
 </keyparts>
 </internalobjectkeyrule>
 ...
</keyrules>

PPM CUSTOMIZING

35

Warning

When creating the object key rules, make sure that different object keys are calculated for

different object types (function or event). Overwriting objects of different types leads to

undefined results.

6.2.6 Output behavior of messages

For the processkeyrule, hierarchykeyrule, mergekeyrule and sharedfragmentkeyrule

rules, you can influence the output behavior of system messages using the

onmissingkeypart XML attribute, if the sub-key specified in the keyparts XML element

cannot be calculated. The attribute can have one of the values info, warning or ignore, the

default value is warning.

Attribute value Description

info The message is output as information.

warning The message is output as a warning.

ignore No message is output.

Example

If you are using the predecessor merge method, the information for calculating the key for

the preceding fragment to the first fragment in the process instance is normally missing. To

suppress the expected messages, specify the value ignore for the onmissingkeypart XML

attribute.

6.2.7 Configuration file

The XML configuration file contains all key rules. A rule consists of a list of object attribute

names, whose values are used to create the keys. By default, a key is created by combining

the values of the specified attribute types. An alternative type of processing can be set by

using a different Java class (see below).

Process and hierarchy keys are saved in the database.

Shared fragment keys are also attribute types of the process instances and are saved in the

database.

PPM CUSTOMIZING

36

Merge and object keys are written to the corresponding object as an object attribute. Merge

keys are saved in the AT_MERGE_KEY_1 to AT_MERGE_KEY_10 attribute types of the

referenced object, while the object key is saved in the AT_INTERNAL_OBJECTKEY attribute

type.

FILE KEYRULES.DTD (PART 1):

FILE KEYRULES.DTD (PART 2):

PPM CUSTOMIZING

37

All of the rules specified in the configuration file reference the AT_OBJNAME_INTERN

object attribute.

The refobjects XML element specifies a list of objects to which the relevant rule relates. In

the refobject XML element, the objecttype XML attribute specifies the object type and the

objectname XML element specifies an object identifier. Several objectname XML elements

can be specified.

As the key parts (keyparts XML element), specify the names of the attributes to be used to

generate the key.

If you want to use a processing type other than combining, in the algorithm XML element

specify the name of the Java class (classname XML attribute), which implements a different

algorithm for processing the key attribute values.

Warning

The fixed attributes (AT_MERGE_KEY_1 to AT_MERGE_KEY_10) are provided to store

calculated merge keys. They may not be changed or assigned values from the XML import.

Keys are calculated when importing the process instance fragments. If you change the key

rules for an existing process type, you need to import all process instance fragments of this

process type again. Otherwise, the subsequent merging of the process instances will lead to

unwanted results. Changes to key rules for process instance fragments in a process for which

process instances already exist in the PPM system should therefore only be made with

extreme caution.

Extending the rules when adding a new process type to the PPM system is not so critical if

the existing process instances remain unaffected.

6.3 Process fragment merge

For a process merge you can select either the Replace or the Update mode.

PPM Customizing Toolkit provides two merge variants, Replace attributes/objects (default)

and Merge attributes/objects, in the Merge component of the Process merge module. By

default, the Replace attributes/objects (default) merge mode is activated.

The Replace and Update modes only affect process merge. The event merge works the same

for both.

In the merger configuration (page 27) (mergerconfig.dtd), you can specify for each PPM client

whether attributes are to be replaced or merged during a merge.

PPM CUSTOMIZING

38

6.3.1 Merge mode "Replace"

In Replace merge mode, the process attributes of the newer (last imported) process instance

(except for the merge attributes) are transferred to the resulting fragment. For identical

functions and events (identical internal object key), the last imported (newer) object replaces

the older object including all attributes. Only object attributes and organizational units of the

newer (last imported) object are retained. The AT_ORIG_EPK_ID determines which object is

newer.

As an option, you can specify a list of process attributes to be transferred from an older

process instance to the resulting fragment when merging fragments. The process attribute of

the previously imported fragment or the existing process instance is overwritten with the

process attribute of the fragment imported later.

In the mergeattributes XML element in the merge configuration, specify a list of process

attributes to be transferred when merging fragments. All other process attributes are ignored.

Example

The merge configuration file extract below causes the AT_SAPSYSTEM and AT_SAPCLIENT

process attributes to the resulting fragment or an existing process instance when merging

fragment instances.

<mergerconfig>
 <mergehandling>
 <processmerge>
 <mergeattributes>
 <attribute key = "AT_SAPSYSTEM"/>
 <attribute key = "AT_SAPCLIENT"/>
 </mergeattributes>
 </processmerge>
...
 </mergehandling>
</mergerconfig>

Tip

Transferring process attributes enables you to directly overwrite dimension values based on

process attributes by importing a fragment that contains only the process attribute with a

new value for which the dimension has been created.

Please remember that existing process attributes will be overwritten when you copy object

attributes (see Attribute copy rules chapter) at a later time.

If the process attribute is specified for multiple fragments with the same process key, and the

import of all fragments is split over several import operations, it is not possible to ensure that

the attribute value of the last fragment imported will be transferred to the resulting fragment.

PPM CUSTOMIZING

39

6.3.2 Merge mode "Update"

In Update merge mode the process attributes of the newer (last imported) process instance

are merged with the process attributes of the older process instance. The same applies to

functions with function attributes and associated organizational units.

TIME OF IMPORT AT THE ATTRIBUTE LEVEL

The time of import is the factor in Update mode which determines which object is newer. The

time of import is recorded for process instances, functions, events, organizational units (each

as AT_ORIG_EPK_ID), and at the attribute level. After import, each attribute's time of import

is known. The time of import is written to the imported EPC during XML import or process

import.

If the time of import is unknown for an attribute (for example, for inventory data imported in

Replace merge mode) the time of import of the object (function, process, etc.) that the

attribute is assigned to is used.

ADDITIVE MERGE AT THE FUNCTION LEVEL

If two functions with identical internal object keys are identified during the merge they will be

merged as follows.

1. The newer function (last imported) including its attributes and organizational units will be

transferred to the merged process instance.

2. All attributes of the old function are copied to the new function. If an attribute exists at

both functions the attribute of the old function will be copied if it is newer.

3. All organizational units of the old and the new function will be merged. The following

chapter describes the merging of organizational units.

ORGANIZATIONAL UNITS

When merging two functions all organizational units of the old function are copied to the new

function. If the same organizational unit exists at both functions the newer organizational

unit including its associated connection and attributes will be retained. In this case, attributes

of the connection assigned to the older organizational unit and attributes of the older

organizational unit will not be transferred.

EQUALITY OF ORGANIZATIONAL UNITS

1. During the merge, the AT_OBJNAME attribute determines if two non-anonymized

organizational units are identical.

PPM CUSTOMIZING

40

For an anonymized organizational unit (that is, its original object name was changed) to

be identified as identical during a reimport, an internal object key

AT_INTERNAL_OBJECT_KEY must exist at the organizational unit. The object key is

defined using object key rules.

2. Anonymized and non-anonymized organizational units are identical when the object key

AT_INTERNAL_OBJECT_KEY matches.

3. Two anonymized organizational units are identical when the object keys AT_OBJNAME

and AT_INTERNAL_OBJECT_KEY match.

TIME OF IMPORT OF THE ORGANIZATIONAL UNIT

If no AT_ORIG_EPK_ID key is defined for an organizational unit the AT_ORIG_EPK_ID key

of the associated function is used to determine the time of import of the organizational unit.

ADDITIVE MERGE AT THE PROCESS LEVEL

During the merge, all attributes of the newer and older process instance are copied to the

resulting fragment. If an attribute exists at both process instances the newer attribute is

transferred.

ADDITIVE MERGE AT THE EVENT LEVEL

If two events with identical internal object keys are identified during the merge they will be

handled like in Replace mode. This means that the newer event replaces the older event and

that attributes of the older event are not transferred to the newer event.

CONFIGURATION

The DTD mergerconfig.dtd (page 27) contains the Replace and Update modes for

configuration.

<!ELEMENT processmerge (algorithm?, mergeattributes?)>
<!ATTLIST processmerge
 mode (replace|update) 'replace'
>

The mode attribute is optional, and if it is missing the Replace mode is applied by default.

In Update mode, merge attributes (mergeattributes) are not evaluated. If a configuration

containing (non-empty) merge attributes is imported with the Update mode attribute a

corresponding message is output.

CHANGE THE MERGE MODE

You can change the merge mode anytime via the merge configuration. This means that you

can switch existing clients in Replace mode to Update mode.

The list of merge attributes is not used in Update merge mode.

PPM CUSTOMIZING

41

SHARED FRAGMENT

For the merge of two shared fragments in Update mode when using the default algorithm

(ZDefaultSharedFragmentMergeAlgorithm) the same merge mode is automatically used that

is also specified in the merge configuration for the merge of two normal fragments.

SPECIAL ATTRIBUTES

Special attributes (for example, internal PPM attributes or attributes such as

AT_IS_SHARED_FUNCTION) in Update mode are handled like all other attributes.

PROCESS TYPIFICATION

To transfer process type information directly from the source system in Update mode

(without typification rules), the attributes AT_INTERNAL_PROCTYPE and

AT_INTERNAL_PROCTYPEGROUP including typification information (process type and

process type group) must be specified.

CALCULATED ATTRIBUTES

Calculated attributes at the process or at functions are also copied by the Update mode.

If a calculated attribute of the old function is copied to the new function during the merge of

two functions, and if that attribute is not calculated later, the older, calculated value would

exist at the merged function.

If you wish to turn off this behavior you need to set the parameter calcattr delete=yes for

the calculation rule. If this parameter is set attributes that cannot be calculated will be

deleted later.

6.4 Merge events

6.4.1 Parallel paths with multi-valued keys

If you want to merge parallel process paths again when using a key-based merge, you must

calculate several merge keys for the end events of the preceding process fragments for the

start event of the merging fragment. You specify a multi-valued attribute and a separator for

this purpose in the multikey XML element. Multi-valued means that the value of the specified

attribute is split into several parts using a separator. A merge key is calculated for each part.

PPM CUSTOMIZING

42

Example

The fragments of a process instance are linked by the THIS_KEY and PREV_KEY merge

attributes. The key for the predecessor is saved in the PREV_KEY attribute. If a system event

has several predecessors, each key for the predecessors is written to the log file multiple

times in the PREV_KEY attribute. The attribute mapping used is configured in such a way

that the PREV_KEY attribute is instantiated with several values for the merge events as

AT_KEY.

The data extraction from your source system includes the following system event:

...
 <attribute type="EVENTTYP">Change customer order</attribute>
 <attribute type="PROC_ID">123456</attribute>
 <attribute type="THIS_KEY">3</attribute>
 <attribute type="PREV_KEY">1</attribute>
 <attribute type="PREV_KEY">2</attribute>
 <attribute type="USER">Team A</attribute>
...

The mapping file used contains the following attribute mapping for start and end events:

...
<!-- mapping startevents -->
 <attribute ppmattributetype="AT_KEY">
 <multieventattributetype
delimiter=";">PREV_KEY</multieventattributetype>
 </attribute>
<!-- mapping endevents -->
 <attribute ppmattributetype="AT_KEY">
 <eventattributetype>THIS_KEY</eventattributetype>
 </attribute>
...

The active merge configuration contains the following rule:

...
<mergekeyrule>
 <refobjects>
 <refobject objecttype="OT_EVT"></refobject>
 </refobjects>
 <keyparts>
 <multikey attributetype="AT_KEY" delimiter=";" />
 </keyparts>
</mergekeyrule>
...

In the fragment whose start event has a THIS_KEY attribute with the value 3, the preceding

fragments whose end events have a THIS_KEY attribute with the value 1 or 2 are merged.

After merging fragments, the attributes are transferred unchanged, that is, the resulting set

of sub-keys is not written back to the merge attribute for the remaining event in consolidated

form.

PPM CUSTOMIZING

43

Example

For example, if you are using rules that calculate a merge key from the multi-valued AT_KEY

attribute, and AT_KEY has the value x;y at the system event A and the value y;z at the

system event B, the AT_KEY attribute has the value of the attribute of the system event B,

assuming that the system event B was imported later. Merging of fragments is unaffected by

this, as fragments are merged using merge keys that are already calculated during the import.

6.4.2 Merge mode

When merging the merge events, you can optionally specify which of the merge events will be

transferred to the resulting fragment using the eventmode attribute for the mergehandling

XML element in the merger configuration. Valid values are STARTEVENT, ENDEVENT and

IMPORTTIME, with a default value of IMPORTTIME.

The following event types exist:

Type Description

Start event A standard event has no predecessor (outgoing

connection only).

Coupling event A coupling event has both predecessors and

successors (incoming and outgoing connection).

End event An end event has no successors (incoming

connection only).

KEY-BASED MERGE

When using a key-based merge, the behavior when merging merge events is as follows:

eventmode Description

IMPORTTIME The event imported later is transferred regardless of

the event type.

Default value

STARTEVENT The event imported later that is not an end event is

transferred. An end event is only transferred if two

end events are being merged.

PPM CUSTOMIZING

44

eventmode Description

ENDEVENT The event imported later that is not an start event is

transferred. A start event is only transferred if two

start events are being merged.

MERGE BASED ON SORT ORDER

When using a merge based on sort order, the selected event types are given priority directly

when merging as the process instance is always broken down into individual fragments of the

form Event-Function-Event before the merge. If two merge events of the same type are

being merged, the one imported later is transferred.

6.5 Attribute copy rules

Process instance attributes are required to calculate instance-related measures and to create

dimensions. When importing data in PPM event format, attributes of the process instance

fragments cannot be imported directly because the instance fragment is created dynamically

from a fragment definition. Object attributes of the instanced process fragment are therefore

copied to the process instance.

The rules for copying object attributes to the process instance are made up of the following

sections:

 List of attributes to be copied. The specified attribute copy rule is used for each attribute

type in the list.

 Source object type of objects whose attribute type is to be copied

 Prioritized list of objects (AT_OBJNAME_INTERN object attribute) whose attribute type is

to be copied. The list of objects is processed from top to bottom. As soon as it was

possible to copy the attribute type, the next copy rule is processed.

If the attribute type is not specified for any of the objects indicated or for the process

instance, the attribute type is created with the default value specified in the #PCDATA

section of the attributspec XML element.

The following example copies the AT_ID attribute for the FCT_Create_order function to the

process instance. If the attribute cannot be accessed as it is not specified or the function

does not exist, the attribute for the next object indicated, FCT_Create_invoice is copied.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE copyattributerules SYSTEM "copyattributerules.dtd">
<copyattributerules>

PPM CUSTOMIZING

45

 ...
 <copyattributerule>
 <attributespec srcattrname="AT_ID"/>
 ...
 <sourceobjectspec nodetype="OT_FUNC">
 <objectname name="FCT_Create_order"/>
 <objectname name="FCT_Create_invoice"/>
 ...
 </sourceobjectspec>
 </copyattributerule>
 ...
</copyattributerules>

The DTD CopyAttributeRules.dtd describes the structure of the XML file for the attribute

copy rules:

All of the source object names specified in the configuration file reference the

AT_OBJNAME_INTERN attribute.

The copying of object attributes also allows you to transfer process type information directly

from the source system when using PPM event format. The attributes corresponding to the

process type and the process type group are written to the process instance objects that

occur in each process instance by mapping as the AT_PROCTYPE and

AT_PROCTYPEGROUP attributes and are copied to the process instance using the attribute

copy rules.

6.6 Anonymizing

It can be useful not to display the names of the processors involved in executing a function,

for example, for data protection reasons. After initializing the PPM client database, in the PPM

PPM CUSTOMIZING

46

front-end you can use the Organizational units administration component to specify how

the names of the processors occurring in the instance data are replaced by the names of

organizational units (anonymized).

When aggregating process instances, the information on the processor of functions is lost. To

transfer information about the processors into an aggregated EPC, they must be anonymized.

To do this, you create PPM organizational units and assign all relevant processors to

organizational units. When importing date, the names of the processors are replaced by the

names of the corresponding organizational unit.

An organizational unit is defined by the following properties in the PPM system:

User interface item Description

Name Name of the organizational unit (freely

selectable)

Processor List of processors that are assigned to the

selected organizational unit

Cost rate Cost of a member of staff from an

organizational unit per unit of time. The cost

rate affects the calculation of certain

measures in the process cost calculation

(see chapter Definition of process cost

measures (page 156)).

Ignore during measure

calculation

The selected organizational unit is not

included in the measure calculation. This

may be specified, for example, when

processors perform batch processing

functions (so-called batch users).

All non-assigned

processors to this

organizational unit

Processors that are not assigned to an

organizational unit are anonymized using the

name of this organizational unit.

You must define a default organizational unit

in order to be able to save the configuration.

The organizational unit must have at least

one processor.

You can use the runppmconfig command line program to export organizational units to an

XML file that you can also modify manually. For further information about the command line

program, please refer to the PPM Operation Guide.

PPM CUSTOMIZING

47

Example

Mr Brown and Mrs Smith work in the Order acceptance department, Mr Miller in the

Accounting department. When importing data, the processors Mr Brown and Mrs Smith are

replaced by the name of the Order acceptance organizational unit, while Mr Miller is replaced

by the name Accounting, while all other processors are replaced by the name of the default

organizational unit, Not specified. The specified cost rates are used by the Measure

calculator for process cost analysis.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE orgunitlist SYSTEM "orgunits.dtd">
<orgunitlist>
 <orgunit isdefault="NO" isbatchuser="NO">
 <name>ORDER ACCEPTANCE</name>
 <costrate>15.75 EUR_PER_HOUR</costrate>
 <user>Mrs Smith</user>
 <user>Mr Brown</user>
 </orgunit>
 <orgunit isdefault="NO" isbatchuser="NO">
 <name>ACCOUNTING</name>
 <costrate>25.3 EUR_PER_HOUR</costrate>
 <user>Mr Miller</user>
 </orgunit>
 <orgunit isdefault="YES" isbatchuser="NO">
 <name>Not specified</name>
 <costrate>24 EUR_PER_HOUR</costrate>
 <user>DUMMY</user>
 </orgunit>
</orgunitlist>

The document type definition orgunits.dtd for this XML file looks like this:

You can import the XML file created when initializing the database by specifying the file

name, so that anonymizing rules are available immediately.

PPM CUSTOMIZING

48

7 Process typification

Automatic assignment of process instances to a particular process type is done using a

typification rule that is registered in the process tree configuration at the corresponding

process type with its unique internal name.

The typification rule is defined as a calculation function in the measure configuration. You can

define a maximum of one typification rule per process type. See Create typification rules

(page 48) for details.

Alternatively, the process typification can be done by importing values in specific attributes,

the so-called "pretypification". See Typification by attribute calculation (page 147) for details.

7.1 Create typification rules

The chapters below describe the two steps for creating a typification rule:

 Definition of a typification rule in the measure configuration

 Use of a typification rule in the process tree configuration

Use PPM Customizing Toolkit to create typification rules. This allows you to create rules easily

and avoid sources of errors, particularly with more complex calculation rules for typification

rules (see chapter Typification rules in CTK (page 146)). The changes are imported into the

PPM system by activating the configuration.

7.1.1 Measure configuration

The typification rules are defined based on attribute calculations in the measure

configuration. The calculation rule is specified in the function XML element.

XML tag Description

function name Name of the typification rule – referenced by the

typifierrule function XML element for the

process tree configuration.

resulttype Result value. Must be of the BOOLEAN type.

datatype Data type. Must be of the BOOLEAN type.

A typification rule for the above example could look like this:

PPM CUSTOMIZING

49

Example

Extract from file Keyindicator.xml

...
<function name="typifierrule_OrderProcessing_StandardOrder"
 resulttype="BOOLEAN" datatype="BOOLEAN">
 <in>
 <constant>
 <dataitem>
 C
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
 <attribute name="AT_SAP_VBTYP" nodetype="OT_FUNC">
 <in>
 <constant>
 <dataitem>
 SO
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
 <attribute name="AT_SAP_VKBELEGART"
 nodetype="OT_FUNC" objectname="this"/>
 </in>
 </attribute>
 </in>
</function>
...

Calling up the typifierrule_OrderProcessing_StandardOrder function (typification rule)

checks whether the process instance to be typified is typified as Order

processing\Standard order (return value = true) or not (return value = false).

The process instance is assigned to the Standard order process type under the following

condition: The process instance must contain at least one function that includes the attribute

type combination AT_SAP_VBTYP with the value C and AT_SAP_VKBELEGART with the

value SO.

7.1.2 Process tree configuration

The typification rules defined previously in the file Keyindicator.xml must now be assigned

to the individual process types in the file Processtree.xml. Only one typification rule can be

specified for each process type. The typifierrule XML element is optional. If no typification

rule is specified for a process type, it is ignored during typification.

You must specify the corresponding information for the function and priority attributes. The

function attribute is used to specify the name of the typification rule you want to use for this

process type, taken from the measure configuration.

PPM CUSTOMIZING

50

Example (extract from process tree configuration)
<processtree name="Processes">
 <processtypegroup name="OrderProcessing">
 ...
 <processtype name="StandardOrder" autovisible="TRUE">
 <typifierrule function=
 "typifierrule_OrderProcessing_StandardOrder"
 priority="0"/>
 <processparamset>
 ...
 </processparamset>
 ...
 <functionparamset>
 ...
 </functionparamset>
 ...
 <useki name="..." assessment="..."/>
 ...
 <usedim name="..."/>
 ...
 </processtype>
 ...
 </processtypegroup>
 ...
</processtree>

7.1.2.1 Prioritization

A process instance is always assigned to a single process type. If several typification rules

apply to a process instance, the priority integer attribute is used to specify which process

type the process instance is ultimately assigned to. A rule with priority 0 has the highest

priority and is prioritized by the typifier.

If, for example, three typification rules with the priorities 2, 3 and 6 apply to the process

instance, it is typified with a priority of 2 in line with the typification rule. The typification rules

3 and 6 are ignored for this process instance. The typifier first of all checks whether a

typification rule with priority 0 applies to the process instance to be typified. If not, a rule

checks whether the next priority level applies and so on.

As soon as a rule applies, processing of the typification rules is ended and the process

instance is assigned to the corresponding process type.

You specify the prioritization of typification rules in the Processes PPM CTK module using the

button Prioritize typification rules on the selected typification rule.

PPM CUSTOMIZING

51

7.1.3 Definition of attribute calculations

To calculate a measure or create a dimension, either the value of an existing attribute is used

or the algorithm for calculation of the attribute is specified in the XML configuration file

(calcattr XML element). The specified attribute name must be contained in the imported

attribute definition for the PPM system (files AttributeTypes.xml and AttributeNames.xml).

The data type and base unit are defined by the attribute definition. The calculation of an

attribute is always made in the base unit of the attribute type. The result is also saved as a

value in the base unit.

Attributes are only valid within a process instance. It is not possible to calculate attributes for

other process instances or to include them in the calculation.

The calculation of an attribute can be made dependent on other attributes, which can

themselves be calculated attributes. All attributes specified with the depends XML element

are calculated before the calculation of the current attribute is executed. Cyclic dependencies

are detected during import of the measure configuration and acknowledged by an error

message.

A default value can optionally be specified (defaultvalue XML element), which can be

assigned to the attribute value if the calculation could not be performed successfully. The

default value must always be specified with a unit that is permissible for the attribute data

type. This is the only way for the value in the base unit to be calculated correctly.

If a calculation rule is used for the calculation (calculation XML element), the default value is

always used if the calculation could not be performed successfully. But if an algorithm is used

for the calculation (calcattr XML element), the default value is only used in combination with

the following calculation classes:

 ZAttributeCalculatorPKSR

 ZAttributeCalculatorPKSS

 ZAttributeCalculatorTransformUniversalMappingByParam

All other calculation classes do ignore the default value.

If an attribute cannot be calculated and no default value is specified, the attribute is not

created for the process instance or the process instance objects and a corresponding

message is output.

The XML structure for definition of an attribute calculation looks like this:

...
<calcattr name="..." type="..." objectname="..."
 scale="..." delete="...">
 <depends attrname="..." type="..."/>
 <defaultvalue>"..."</defaultvalue>

PPM CUSTOMIZING

52

Either

 <calculation> ... </calculation>
</calcattr>
...

or

 <calcclass name="..."/>
</calcattr>
...

XML tag Description

name Internal name of the attribute to be calculated.

The attribute is created for all object types specified

by type in the process instance currently being

processed. Any existing attribute is overwritten.

type Object type to which the attribute is written

PROCESS: Calculated attribute is written to the

process instance.

OT_FUNC: Calculated attribute is written to all

functions in the process instance.

OT_ORG: Calculated attribute is written to all

organizational units in the process instance.

OT_EVT: Calculated attribute is written to all events

in the process instance.

RELATION: Calculated attribute is written to the

relation in the process instance that is specified

using relname.

relname

(optional)

Only for type="RELATION". Specifies the relation to

which the attribute calculation is to relate. To be

used instead of dependsrel.

objectname

(optional)

Internal name of the function

(AT_OBJNAME_INTERN object attribute) to which

the attribute is written. This option may only be used

for the calculation of function attributes. Multiple

object names are specified separated by commas,

the placeholders * and ? can be used as required in

the object name.

PPM CUSTOMIZING

53

XML tag Description

scale

(optional)

The result of a calculation rule is written to the

attribute in the specified scale.

The scale value depends on the data type of the

attribute on which the calculation is based.

If nothing is specified, the result is output in the base

unit for the attribute data type.

delete If the value is yes a previously calculated attribute

value is deleted before the new calculation (for

example, specified for the definition of critical time

attributes used by the Early alert system, see Time

dimensions for the Early alert system (page 197)

chapter). Default value: no

To selectively specify a calculation rule for one or more particular functions, specify the name

of the corresponding function in the objectname XML attribute.

Example

The calculation rule is only executed for functions whose internal names match the specified

pattern.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_END_TIME" type="OT_FUNC"
 objectname="FCT_AUFT??_*,
 FCT_END_*_?,
 *_AUFTRAG,FCT_AUFTR_START">
 <calculation>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

The definition of a calculation rule is completed by specifying the following XML elements:

PPM CUSTOMIZING

54

XML element Description

depends

(optional)

Name and type of an attribute (PROCESS,

OT_FUNC, OT_EVT, OT_ORG, or RELATION),

which must exist for the calculation to be executed.

If the specified attribute is a calculated attribute,

this is calculated first. The relname attribute

specifies the relation on which there is a

dependency (only for type="RELATION").

Several depends elements can be specified

simultaneously.

Not to be used in conjunction with dependsrel.

dependsrel

(optional)

Name of the relation on which there is a

dependency (only for type="RELATION"). To be

used instead of relname.

Not to be used in conjunction with depends.

defaultvalue

(optional)

Default value of the attribute if the attribute cannot

be calculated for whatever reason.

calcclass

calculation

Unique specification of the calculation rule using

one of the two XML elements.

You use calcclass to specify the algorithm by

entering a complete Java class path. Using

calculation specifies a calculation formula directly

in XML notation.

calcparam

(optional)

Only for calcclass. Transfers any number of

parameters (calcparam) when calling up a

calculation class. The unique internal name of the

parameter is defined using key and the

corresponding parameter value using value.

For calculating an attribute using the calculation XML element, a comprehensive set of rules

for the definition of calculation rules is available.

Example

The example below shows the XML definition of the calculation of the processing time for a

process instance. The processing time is defined as the difference between the earliest start

time and the latest end time of all functions in a process instance. To store the measure value,

the AT_KI_PROCESSTIME attribute (type: time span) is selected. The calculation is only to

be carried out if the two attributes AT_START_TIME and AT_END_TIME are specified for at

PPM CUSTOMIZING

55

least one function of the process instance. This does not necessarily have to be the same

function. If the calculation fails for any reason, the result attribute is assigned the default

value of 0 SECOND.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_KI_PROCESSTIME" type="PROCESS">
 <depends attrname="AT_END_TIME" nodetype="OT_FUNC">
 <depends attrname="AT_START_TIME" nodetype="OT_FUNC">
 <defaultvalue>0 SECOND</defaultvalue>
 <calculation>
 <timespan>
 <filteredattribute name="AT_END_TIME"
 nodetype="OT_FUNC" filter="LATEST"/>
 <filteredattribute name="AT_START_TIME"
 nodetype="OT_FUNC" filter="EARLY"/>
 </timespan>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

A calculated attribute always contains the result value and the result unit. The result unit is

always specified in the base unit corresponding to that in the data type of the event attribute.

7.1.3.1 Calculation classes

This chapter describes all of the calculation rules contained in PPM, which can be specified as

a class name for calculation of an attribute using the calcclass XML element. The class name

must be specified with the Java package structure path.

Example
<calcattr name="AT_KI_FDLZWK" type="OT_FUNC">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.ZAttributeCalculatorFDLZWK"/>
</calcattr>

The fixed part of the class name is omitted below. Instead of

com.idsscheer.ppm.server.keyindicator.attributecalculator.ZAttributeCalculatorFDLZ

WK,

 ZAttributeCalculatorFDLZWK is specified.

PPM CUSTOMIZING

56

7.1.3.1.1 Log output for calculation classes

You have the option of specifying which messages are to be output for each calculation class

using the loglevel XML attribute. Enter one of the values SILENT, DEFAULT, or VERBOSE.

The following table shows the default relationship between the loglevel XML attribute and

the type of messages that are output from the calculation class. The message type is

determined by the assigned logger module in the client-specific configuration file

Server_Log_settings.properties.

Log level Description

SILENT All log output is suppressed.

DEFAULT Warnings and error messages are output.

VERBOSE Information, warnings, and error messages are output.

Server_Log_settings.properties file extract:

...
#MODULE_CALCCLASS_SILENT
log4j.logger.LOG.CCS=FATAL
#MODULE_CALCCLASS_DEFAULT
log4j.logger.LOG.CCD=WARN
#MODULE_CALCCLASS_VERBOSE
log4j.logger.LOG.CCV=INFO
...

Example

The following file extract specifies that information, warning, and error messages are not to

be output for the calculation of the function cycle time.

...
<calcattr name="AT_KI_FDLZ" type="OT_FUNC"
 loglevel="SILENT">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.ZAttributeCalculatorFDLZ"/>
</calcattr>
...

If you specify arguments in the command line to control log output, these arguments take

precedence over the specifications in Server_settings.properties. (see chapter on

Common arguments)

PPM CUSTOMIZING

57

7.1.3.1.2 Time measures

The AT_START_TIME and AT_END_TIME function attributes are used to calculate time

measures. These attributes are created by mapping a suitable source system attribute during

the XML import.

7.1.3.1.3 Function measures

The diagram below illustrates the calculation of the function measures Processing time

(FBZ), Processing span (FBZSpan), Cycle time (FDLZ), Cycle time span (FDLZSpan) and

Wait time (FLZ):

PPM CUSTOMIZING

58

The calculation rules also apply to relations between branching rules. For analysis of the

Cycle time and Wait time measures for function 2, it is assumed that the start and end time

of function 3 are after the start and end time of function 4.

The calculated measure attribute is written to the function at which the arrow in the diagram

ends. Negative time differences are returned as a measure value of 0.

PPM CUSTOMIZING

59

When calculating the Processing span and Cycle span measures, all functions with the same

name are taken into account (AT_OBJNAME function attribute), even if these occur within a

process instance in independent process chains.

Warning

If only end times can be extracted from the source system, only the Cycle time and Cycle

span measures can be calculated.

FBZ

Name Function processing time

Type Time span

Source

attributes

AT_START_TIME

AT_END_TIME

Result Difference between end time and start time of a

function instance

FBZWK

As for FBZ, but based on the factory calendar.

FBZSPAN

Name Function processing span

Type Time span

Source

attributes

AT_START_TIME

AT_END_TIME

Result Difference between latest end time and earliest start

time of all function instances with the same name

Note The result is saved for each of the function instances

with the same name. If a function only occurs once

in a process instance, FBZSpan is the same as FBZ.

FBZSPANWK

As for FBZSpan, but based on the factory calendar.

PPM CUSTOMIZING

60

FDLZ

Name Function cycle time

Type Time span

Source

attributes

AT_END_TIME

Result Difference between the end time of a function

instance and the latest end time of its preceding

function instances

Note For merging rules, the end times of all preceding

function instances are taken into account.

FDLZWK

As for FDLZ, but based on the factory calendar.

FDLZWKBYPARAM

As for FDLZWK, but using any user-defined factory calendar. The corresponding

configuration settings are transferred in the form of parameters when calling up the class.

Warning

Note that the name (key) of each parameter is written in upper case.

<calcattr name="AT_KI_FDLZWKByParam" type="OT_FUNC">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.ZAttributeCalculatorFDLZWKByParam">
 <calcparam key="FC_ATTRIBUTENAME" value="AT_FC_NAME"/>
 <calcparam key="FC_DIRECTORY" value="calculations\fc"\>
 </calcclass>
</calcattr>

The AT_FC_NAME attribute type, which contains the name of the factory calendar file to be

used, is specified using the FC_ATTRIBUTENAME parameter. The attribute type must be

specified for the function or process instance for which the calculation is executed and must

appear in the data files to be imported in the form <attribute

type="AT_FC_NAME">ExampleFactoryCalendar.xml</attribute>.

You specify the corresponding directory containing the factory calendar file to be used

relative to the PPM data directory in the FC_DIRECTORY parameter. The PPM data directory

data_ppm is located under <PPM installation directory>\ppm\server\bin\work\.

Example

PPM data directory: C:\SoftwareAG\ppm\server\bin\work\data_ppm

PPM CUSTOMIZING

61

 absolute path to the directory containing the factory calendar file:

C:\SoftwareAG\ppm\server\bin\work\data_ppm\calculations\fc

 relative path to the directory containing the factory calendar file: calculations\fc.

The two parameters FC_ATTRIBUTENAME and FC_DIRECTORY must always be specified

together.

The function cycle time FDLZWKByParam is calculated in the same way as the default

calculation of the FDLZWK time measure, except that the factory calendar defined by the

specified parameters is used for the calculation instead of the factory calendar imported into

PPM by default.

Configure the calculations for the FBZWKByParam, FLZWKByParam, and

PDLZWKByParam time measures in the same way, if you want to use custom factory

calendar files to calculate the standard measures FBZWK, FLZWK, and PDLZWK.

FDLZSPAN

Name Function cycle time span

Type Time span

Source

attributes

AT_END_TIME

Result Difference between the latest end time of all function

instances with the same name and the earliest end

time of all function instances preceding those

function instances

Note The result is saved for each of the function instances

with the same name. If a function only occurs once in

a process instance, FDLZSpan is 0.

FDLZSPANWK

As for FDLZSpan, but based on the factory calendar.

FLZ

Name Function wait time

Type Time span

Source

attributes

AT_START_TIME

AT_END_TIME

PPM CUSTOMIZING

62

Name Function wait time

Result Difference between the start time of a function

instance and the latest end time of its preceding

function instances

Note For merging rules, the end times of all preceding

function instances are taken into account.

FLZWK

As for FLZ, but based on the factory calendar.

7.1.3.1.4 Process measures

PDLZ

Name Process cycle time

Type Time span

Source

attributes

AT_START_TIME

AT_END_TIME

Result Difference between the latest and earliest time for the

end and start times of all function instances in the

process instance

Note This calculation method enables calculation of process

cycle times even if only AT_END_TIME is specified for

function instances, for example, when extracting from

SAP systems.

PDLZWK

As for PDLZ, but based on the factory calendar.

PDLZWKBYPARAM

As for PDLZWK, but taking into account the user-defined factory calendar Definition as for

FDLZWKByParam.

PPM CUSTOMIZING

63

7.1.3.1.5 Frequency measures

7.1.3.1.6 Function measures

FEDFREQ

Name Number of executions

Type Integer

Source

attributes

AT_COUNT_PROCESSINGS

Result Value of the AT_COUNT_PROCESSINGS attribute. If

the attribute is not specified for the function instance,

the sum of all AT_COUNT_PROCESSINGS attribute

values for the connections between the function

instance and the assigned organizational units is

returned.

Note Source attribute values less than zero are returned as

0.

FEDFREQSPAN

Name Number of executions (span)

Type Integer

Source

attributes

AT_COUNT_PROCESSINGS

Result Sum of the values of the AT_COUNT_PROCESSINGS

attribute for all function instances with the same

name. If the attribute is not specified at a function

instance, the sum of all AT_COUNT_PROCESSINGS

attribute values for the connections between the

function instance and the assigned organizational

units is used instead of the attribute value.

Note Source attribute values less than zero are returned as

0.

PPM CUSTOMIZING

64

FFREQ

Name Function frequency

Type Integer

Source

attributes

-

Result Is assigned the value 1.

Note When calculating the measure, the values are added

together and divided by the number of days given by

the selected scaling of a time dimension, for example,

(1+1)/365 days when using a time dimension with the

step width Yearly.

FNUM

Name Number of functions

Type Integer

Source

attributes

-

Result Is assigned the value 1.

Note When calculating the measure, the values are added

together and divided by the number of days given by

the selected scaling of a time dimension, for example,

(1+1)/365 days when using a time dimension with the

step width Yearly.

FOEFREQ

Name Number of different users

Type Integer

Source

attributes

-

PPM CUSTOMIZING

65

Result Number of different organizational units that process

a function instance. To differentiate, the

AT_OBJNAME attribute of the organizational units is

used.

Note If no organizational units are specified at a function

instance, the value 1 is returned.

FOEFREQB

As for FOEFREQ, except that the value 0 is returned if no organizational units are specified at

a function instance.

7.1.3.1.7 Process measures

PEDFREQ

Name Number of executions

Type Integer

Source

attributes

AT_COUNT_PROCESSINGS for all function instances

in the process instance

Result Sum of the values of the AT_COUNT_PROCESSINGS

attribute for all function instances in the process

instance. If the sum cannot be calculated, the result is

1.

PFREQ

Name Process frequency

Type Integer

Source

attributes

-

Result Is assigned the value 1.

PPM CUSTOMIZING

66

Note When calculating the measure, the values are added

together and divided by the number of days given by

the selected scaling of a time dimension, for

example, (1+1)/365 days when using a time dimension

with the step width Yearly.

PINT, PINTB, PINTC

For function instances to which no processors are assigned, you can specify how they are to

be handled when calculating the Number of processors measure. To calculate the

AT_KI_PINT attribute, specify one of the following calculation classes in the measure

definition:

<Class name> Description

ZAttributeCalculatorPINT Each function instance without a

processor assigned is handled like a

function instance with a new, different

processor (default setting).

ZAttributeCalculatorPINTb Any function instance without a

processor assigned will be ignored in

measure calculation.

ZAttributeCalculatorPINTc All function instances without a

processor assigned are only taken into

account once for the entire process

instance, that is, the same processor is

assumed.

PNUM

Name Number of processes

Type Integer

Source

attributes

-

Result Is assigned the value 1.

PPM CUSTOMIZING

67

Note For an aggregated EPC, the number of processes

specifies the number of aggregated process

instances. EPCs whose Number of processes

measure is greater than 1 are EPCs for aggregated

process instances.

7.1.3.1.8 Process cost rates

The PKSS and PKSR calculation classes calculate process costs for function instances. The

process costs for process instances are determined by an attribute calculator calculation rule.

PKSS

Name Process costs based on performance standard

Type Costs

Source

attributes

AT_COSTRATE (organizational units)

AT_LS (function)

AT_COUNT_PROCESSINGS (connections between

organizational units and functions)

Result Average process costs for one-off execution of a

function (see chapter Definition of process cost

measures (page 156)).

Note The performance standard (AT_LS function attribute)

must be specified at the function instance.

PKSR

Name Process costs based on processing time

Type Costs

Source

attributes

AT_COSTRATE (organizational units)

AT_KI-FBZ (function)

AT_COUNT_PROCESSINGS (connections between

organizational units and functions)

Result Average process costs for one-off execution of a

function (see chapter Definition of process cost

PPM CUSTOMIZING

68

measures (page 156)).

Note The processing time (AT_KI_FBZ function attribute) is

calculated automatically; start and end times

(AT_START_TIME and AT_END_TIME function

attributes) must be specified at the function instance.

7.1.3.1.9 More process measures

ISGRAPHCONNECTED

Name Linked EPC

Type Logical value

Source

attributes

-

Result Returns TRUE if all objects in the EPC are linked to one

another by a connection.

Note -

ORIGINATOR

Name Organizational unit

Type Text

Source

attributes

AT_OBJ_NAME of organizational units

Result Returns the name of the organizational units specified

at the function instance, which have the same names

(AT_OBJNAME attribute of an organizational unit).

Note If no organizational units are specified for a function

instance or if organizational units with different names

are specified, the result is a string of length 0.

PPM CUSTOMIZING

69

7.1.3.1.10 Environmentally relevant calculations

ZATTRIBUTECALCULATORTRANSFORMUNIVERSALMAPPINGBYPARAM

This calculation class calculates the value of an attribute using a mapping file based on

another attribute value. The attribute value transformation can be applied to both process

and object attributes.

You can control the behavior of the calculation class by specifying the following parameters:

Parameter Description Example value

attrname Source system attributes

whose values are

converted

AT_PLZ

mappingfile File that contains the

mapping information

(key-value pairs)

Specify the directory

containing the mapping file

relative to the

data_ppm\bin directory.

The directory is located

under <PPM installation

directory>\ppm\server\bin

\work\.

..\custom\<ppmclient>\xml\

attrtrans\PLZ_Ort.mappings

defaultcopy Specifies the behavior if no

mapping is found for the

attribute value.

Valid values: TRUE, FALSE

TRUE: The value of the

source attribute is written

unchanged to the target

attribute.

FALSE: The value written

to the target attribute is

Not specified.

FALSE

Note that a default value specified in the calculation rule (defaultvalue XML element) is used

regardless of the defaultcopy parameter. If a default value is specified, it takes priority.

PPM CUSTOMIZING

70

Example

In the example below, the values of the AT_PLZ process attribute are converted into the

AT_ORT process attribute. The conversion is specified in the file PLZ_Ort.mappings. If the

postal code does not relate to any city, the AT_ORT attribute is assigned the value Not

specified.

EXTRACT FROM THE MEASURE CONFIGURATION

...
<calcattr name="AT_ORT" type="PROCESS">
 <defaultvalue>Not specified</defaultvalue>
 <calcclass name="com.idsscheer.ppm.server.
 keyindicator.attributecalculator
 ZAttributeCalculatorTransformUniversalMappingByParam">
 <calcparam key="attrname" value="AT_PLZ"/>
 <calcparam key="mappingfile" value="PLZ_Ort.mappings"/>
 </calcclass>
</calcattr>
...

Content of the mapping file PLZ_Ort.mappings:

66115 = Saarbruecken
10117 = Berlin Center
14612 = Falkensee

Please make sure that the mapping files you are using are regular Java property files. If they

contain umlauts or other special characters, they must be converted with native2ascii.

Further information on converting files with native content to ASCII files is available on the

help pages on the Sun Microsystems, Inc. Web page.

OBJECTCOUNTERBYEPCENV

The ObjectCounterByEpcEnv calculation class calculates the number of functions

preceding or following the current function, ignoring any events and connectors. The current

function is the function for which the calculation rule is being executed.

You can control the behavior of the calculation class by specifying the following parameters:

Parameter Description Example value

DIRECTION

(one value)

Direction of search for

predecessor or successor

functions starting from the

current function

FORWARD (successor functions)

or

BACKWARD (predecessor

functions) in relation to the

function(s) referenced in the

associated calcattr tag

ENVTYPE Search for functions in the DIRECT (only immediately

PPM CUSTOMIZING

71

Parameter Description Example value

(one value) immediate vicinity of the

function or in the entire

process instance

adjacent functions)

INDIRECT (all functions in the

specified search direction)

OBJECTNAMEFILTER

(optional, multiple values)

Limits the search to

particular internal function

names, with use of the

placeholders * and ? as

required. Several name

patterns are specified

using key as follows:

OBJECTNAMEFILTER.0

OBJECTNAMEFILTER.1

OBJECTNAMEFILTER.2,

etc.

AUFT,????AUFT*

FCT_AUFT1, FCT_AUFT_2

*AUFT??

Warning

Note that the name (key) of each parameter is written in upper case.

Example (extract from measure configuration)
...
<calcattr name="AT_KI_COUNTFUNC_ENV" type="OT_FUNC"
 objectname="FCT_CREATE_ORD">
 <calcclass name="com.idsscheer.ppm.server.
 keyindicator.attributecalculator.
 ZAttributeCalculatorObjectCounterByEpcEnv">
 <calcparam key="DIRECTION" value="FORWARD"/>
 <calcparam key="ENVTYPE" value="DIRECT"/>
 <calcparam key="OBJECTNAMEFILTER.0"
 value="FCT_CREATE_*"/>
 <calcparam key="OBJECTNAMEFILTER.1"
 value="FCT_ORDER_*">
 </calcclass>
</calcattr>
...

The configured search retrieves all successor functions directly adjacent to the current

function. The set of functions retrieved is further limited by the specified filter expressions

FCT_CREATE_* and FCT_ORDER_*. The number of objects in the set of functions retrieved

is calculated and is saved in the calculated AT_KI_COUNTFUNC_ENV attribute type.

PPM CUSTOMIZING

72

ATTRIBUTECOPIERBYEPCENV

Use this calculation class to define dependencies between several attribute calculations

(<depends attrname="..." type="..."/>). For example, it can be useful to only execute a

particular attribute calculation when certain attribute type values have already been copied

to selected functions using the AttributeCopierByEpcEnv calculation class.

In the actual calculation, a configurable search starting from the current function is used to

retrieve particular adjacent functions.

Particular attribute type values for a function are then copied to one or more functions in line

with the specified parameters. A distinction is made between the following two main cases:

1. CASE

The current function will be the destination of the copying

operation<calcparam key="COPYROLE" value="DESTINATION"/>).

If several adjacent functions are retrieved, a function needs to be selected from the set of

functions retrieved to be the source of the copying operation. In this case, the COPYTYPE

parameter must have the value 1-TO-1. You should sort the set of functions, otherwise the

value is copied from a random function, or no value is copied if the function does not have the

attribute.

2. CASE

The current function will be the source for the copying operation

(<calcparam key="COPYROLE" value="SOURCE"/>).

The specified attribute type values are to be copied from the starting function to another

specified function. The COPYTYPE parameter must have the value 1-TO-1 as the search can

retrieve several adjacent functions. The SORTATTRIBUTE and SORTTYPE parameters are

used to select a destination function from the set retrieved.

If the specified attribute type values are to be copied from the starting function to all adjacent

functions, the COPYTYPE parameter must have the value 1-TO-N. In this case, it is not

necessary to specify the SORTATTRIBUTE and SORTTYPE sorting parameters as there is no

need to make any further distinction between the functions found.

IDENTIFY THE SOURCE FOR COPYING

To establish the source and target for the copying operation the SORTATTRIBUTE and

SORTTYPE parameters are used to determine the function that is in first position based on

the specified sort direction.

ATTRIBUTE TYPE VALUES TO BE COPIED

The list of attribute type values to be copied is specified with consecutive numbering using

the SOURCEATTRIBUTE.<x> or DESTINATIONATTRIBUTE.<x> parameters, with <x> being an

PPM CUSTOMIZING

73

integer. If no destination attribute type is specified, the source attribute type is created as the

destination attribute type with corresponding values for the specified functions.

You can control the behavior of the AttributeCopierByEpcEnv calculation class by

specifying the following parameters:

Parameter Description Example value

DIRECTION

(one value)

Direction of search for

predecessor or successor

functions starting from the

current function

FORWARD (successor functions)

or

BACKWARD (predecessor

functions) in relation to the

function(s) referenced in the

associated calcattr tag

ENVTYPE

(one value)

Search for functions in the

specified direction in the

immediate vicinity of the

function or in the entire

process instance. All found

functions will be added to

an unsorted set.

DIRECT (only immediately

adjacent functions)

INDIRECT (all functions in the

specified search direction)

OBJECTNAMEFILTER

(optional, multiple values)

Limits the search to

particular internal function

names, with use of the

placeholders * and ? as

required. Several name

patterns are specified

using key as follows:

OBJECTNAMEFILTER.0

OBJECTNAMEFILTER.1

OBJECTNAMEFILTER.2,

etc.

AUFT,????AUFT*

FCT_AUFT1, FCT_AUFT_2

*AUFT??

COPYROLE

(one value)

Role of the current function

in the copying process. The

adjacent functions

identified by the search

each take opposing roles.

SOURCE (copying source)

DESTINATION (copying

destination)

PPM CUSTOMIZING

74

Parameter Description Example value

COPYTYPE

(one value)

If multiple functions are

identified as the copying

destination, this parameter

specifies whether the value

is to be copied to all of

them or just to one

function.

1-TO-1 (value is copied to

 one function)

1-TO-N (value is copied to

 all functions retrieved)

SORTATTRIBUTE

(optional, one value)

Attribute used as sorting

criterion if multiple

functions are retrieved.

This will only be considered

if COPYTYPE 1-TO-1 is

specified.

Existing

PPM attribute type

SORTTYPE

(optional, one value)

Sorting direction for the

selected sorting criterion.

This will only be considered

if COPYTYPE 1-TO-1 is

specified.

ASC (default value:

ascending)

DESC (descending)

SORTNULLVALUES

(optional, one value)

Specifies whether objects

whose sort attribute has

not been entered are to be

sorted by maximum or

minimum value, or if an

error message is to be

output.

MIN, MAX, DEFAULT (default

value)

SOURCEATTRIBUTE.<x>

(multiple values)

The source attribute type

whose value is to be

copied. <x> is an integer

and corresponds to

destinationattribute.<x>

An existing

PPM attribute type

DESTINATION

ATTRIBUTE.<x>

(optional, multiple values)

The destination attribute

type to which the value is

to be copied. <x> is an

integer and corresponds to

sourceattribute.<x>

Existing

PPM attribute type

PPM CUSTOMIZING

75

Example

The configured search retrieves all predecessor functions directly adjacent to the current

function, which is to be used as the source for the copying operation. If multiple predecessor

functions are retrieved, the set of functions identified is sorted in descending order using the

sorting criterion AT_START_TIME. The value of the AT_START_TIME attribute type is

copied from the latest function to the AT_END_TIME attribute type for the destination

function.

EXTRACT FROM THE MEASURE CONFIGURATION

...
<calcattr name="AT_END_TIME" type="OT_FUNC" objectname="...">
 <calcclass name="com.idsscheer.ppm.server.
 keyindicator.attributecalculator.
 ZAttributeCalculatorAttributeCopierByEpcEnv">
 <calcparam key="DIRECTION" value="BACKWARD"/>
 <calcparam key="ENVTYPE" value="DIRECT"/>
 <calcparam key="COPYROLE" value="SOURCE"/>
 <calcparam key="COPYTYPE" value="1-TO-1"/>
 <calcparam key="SORTATTRIBUTE" value="AT_START_TIME"/>
 <calcparam key="SORTTYPE" value="DESC"/>
 <calcparam key="SOURCEATTRIBUTE.0"
 value="AT_START_TIME"/>
 <calcparam key="DESTINATIONATTRIBUTE.0"
 value="AT_END_TIME"/>
 </calcclass>
</calcattr>
...

ATTRIBUTEAGGREGATORBYEPCENV

The AttributeAggregatorByEpcEnv calculation class adds up the specified numerical

attribute type for all adjacent functions. The result is saved in the specified attribute type.

You can control the behavior of the AttributeAggregatorByEpcEnv calculation class by

specifying the following parameters:

Parameter Description Example value

DIRECTION

(one value)

Direction of search for

predecessor or successor

functions starting from the

current function

FORWARD (successor functions)

or

BACKWARD (predecessor

functions) in relation to the

PPM CUSTOMIZING

76

Parameter Description Example value

function(s) referenced in the

associated calcattr tag

ENVTYPE

(one value)

Search for functions in the

specified direction in the

immediate vicinity of the

function or in the entire

process instance

DIRECT (only immediately

adjacent functions)

INDIRECT (all functions in the

specified search direction)

OBJECTNAMEFILTER

(optional, multiple values)

Limits the search to

particular internal function

names, with use of the

placeholders * and ? as

required. Several name

patterns are specified

using key as follows:

OBJECTNAMEFILTER.0

OBJECTNAMEFILTER.1

OBJECTNAMEFILTER.2,

etc.

AUFT,????AUFT*

FCT_AUFT1, FCT_AUFT_2

*AUFT??

AGGREGATION_

ATTRIBUTE

(one value)

Attribute type to be

aggregated

Existing PPM attribute type

Example

In the example below, all successor functions are retrieved for the current function in the

process instance, whose internal name begins with the string FCT_ORDER_ or

FCT_INVOICING_ followed by any four characters. The AT_ORDER_VOL attribute type is

aggregated for the set of functions retrieved and saved in the AT_KI_ORDER_VOL_AGG

attribute type.

PPM CUSTOMIZING

77

EXTRACT FROM THE MEASURE CONFIGURATION

...
<calcattr name="AT_KI_ORDER_VOL_AGG" type="OT_FUNC"
 objectname="ORDER*">
 <calcclass name="com.idsscheer.ppm.server.
 keyindicator.attributecalculator.
 ZAttributeCalculatorAttributeAggregatorByEpcEnv">
 <calcparam key="DIRECTION" value="FORWARD"/>
 <calcparam key="ENVTYPE" value="INDIRECT"/>
 <calcparam key="OBJECTNAMEFILTER.0"
 value="FCT_ORDER_*"/>
 <calcparam key="OBJECTNAMEFILTER.1"
 value="FCT_INVOICING_????"/>
 <calcparam key="AGGREGATION_ATTRIBUTE"
 value="AT_ORDER_VOL"/>
 </calcclass>
</calcattr>
...

7.1.3.1.11 Relation measures

ORGCOPYATTRFROMFUNC

The OrgCopyAttrFromFunc calculation class copies the specified function attribute to the

executing organizational unit. The calculation class is only available when using the

Interaction analysis module. The result is saved in the specified attribute type for the

relevant organizational unit.

For calculations using the OrgCopyAttrFromFunc class, you must specify the following

parameters.

Parameter Description Value or example

attrname Identifier of function attribute

to be copied

AT_END_TIME

Warning

Only one function attribute can be copied for each calcattr XML element. Make sure that the

data types of the source and target attributes are compatible. Essentially, all (including

user-defined) numerical data types (see chapter on Data types (page 12): LONG, DOUBLE,

TIMESPAN, FACTORYTIMESPAN, FREQUENCY, PERCENTAGE) are compatible with one

another. The convert operator allows you to perform appropriate advance data type

conversions (see chapter on Logical operators (page 113)). Make sure that the conversion is

always carried out in the base scaling of the target data type.

PPM CUSTOMIZING

78

Example

In the following example from the measure configuration, the AT_OBJNAME function

attribute is copied to each executing organizational unit (type="OT_ORG") as the AT_FUNC

attribute. The source and destination attribute of the copying operation are both of the TEXT

data type.

<calcattr name="AT_FUNC" type="OT_ORG">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.
 ZAttributeCalculatorOrgCopyAttrFromFunc">
 <calcparam key="attrname" value="AT_OBJNAME"/>
 </calcclass>
</calcattr>

If the AT_FUNC attribute is already specified at the organizational units, you can use

delete="yes" in the calcattr instruction to define that the copying operation should first

delete the attribute value.

The following example graphic from the Interaction analysis module shows the result of the

attribute copy operation in the open object attribute dialogs for the two organizational units

TEAM 1-A and TEAM M-A. The relevant value of the AT_OBJNAME function attribute has

been copied to each organizational unit as the Function attribute (AT_FUNC) of the function

executed by the corresponding organizational unit.

PPM CUSTOMIZING

79

7.1.3.1.12 Process conformance

From version 10.2, PPM provides a process conformance check for processes that have been

modeled in ARIS and that are to be imported into PPM.

PPM provides a special conformance configuration package that contains all customizing

elements required for calculating process conformance. Among other things, the package

contains the conformance measure Conformance rate (KI_CONFORMANCE_RATE (page 79))

calculated on the process instances and an additional relation Conformance issue

(REL_CONFORMANCE_ISSUE (page 79)) that contains detailed information about why

process instances were considered non-conformant.

For details on the process conformance check, see the chapter ARIS process conformance

check in the documentation PPM Customizing Toolkit.

7.1.3.1.13 Conformance rate measure

The conformance customizing package contains the KI_CONFORMANCE_RATE measure

with source attribute AT_KI_CONFORMANCE_RATE. The attribute is calculated by

calculation class ZAttributeCalculatorConformanceRate.

In PPM CTK, the attribute calculation class is named Conformance rate.

The XML structure of AT_KI_CONFORMANCE_RATE looks like this:

<calcattr name="AT_KI_CONFORMANCE_RATE" type="PROCESS" delete="no">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.ZAttributeCalculatorConformanceRate"
 loglevel="VERBOSE" />
</calcattr>

The output of the calculation is a value of either 0.0 (non-conformant) or 1.0 (conformant).

The measure is aggregated by average and shows the proportion of conformant processes to

all processes.

7.1.3.1.14 Conformance issue relation

The Conformance issue relation consists of a source object dimension Preceding function,

a target object dimension Non-conforming function, a single level text dimension

Conformance issue type containing a keyword for the issue type, and a measure Number of

conformance issues that counts issues within a process instance.

The XML structure of the conformance issue relation REL_CONFORMANCE_ISSUE looks like

this:

<relation name="REL_CONFORMANCE_ISSUE">

PPM CUSTOMIZING

80

 <description name="Conformance issue" language="en" />
 <sourcedim name="D_PRECEDING_FUNCTION" />
 <targetdim name="D_NONCONFORMING_FUNCTION" />
 <refki name="RNUM_REL_CONFORMANCE_ISSUE" />
 <refdim name="D_CONFORMANCE_ISSUE_TYPE" />
</relation>

The relation must have a dependency on AT_KI_CONFORMANCE_RATE (page 79) due to the

internal workings of the calculation. The calculation rule is

<calcrel name="REL_CONFORMANCE_ISSUE">
 <depends attrname="AT_KI_CONFORMANCE_RATE" type="PROCESS" />
 <calcclass
name="com.idsscheer.ppm.server.keyindicator.relation.calculator.
 ZRelationCalculatorConformanceIssues" loglevel="VERBOSE" />
</calcrel>

The relation is calculated by calculation class ZRelationCalculatorConformanceIssues.

The issue type information is stored in the key attribute of the relation that was configured

for the assigned dimension. The attribute name can be freely chosen. The dimension must be

a single level text dimension with keyword D_CONFORMANCE_ISSUE_TYPE. Otherwise, the

relation is not calculated and none of the associated measures and dimensions have a value.

If you need to use a different keyword, for example because there already is another

dimension D_CONFORMANCE_ISSUE_TYPE in the customizing, you can supply that

keyword to the calculation class ZRelationCalculatorConformanceIssues as the value of

the parameter issue_type_dimension_keyword.

7.1.3.1.15 Convert time spans in milliseconds

The ZAttributeCalculatorConvertMillisecondDuration class is a parameterized attribute

calculator class to be used for converting time spans in the internal Software GmbH format

MillisecondDurationType into a PPM time span format. The MillisecondDurationType

format consists of a value in float format (no unit) containing a time span number in

milliseconds.

Example of a time span output in PPM event format
<attribute type="DURATION_IN_MS">12618.0</attribute>

Example of the use of an attribute calculator class
<calcattr name="AT_KI_DURATION" type="OT_FUNC\" >
 <calcclass
name="com.idsscheer.ppm.server.keyindicator.attributecalculator.
 ZAttributeCalculatorConvertMillisecondDuration">
 <calcparam key="ATTRIBUTE_MILLISECOND_DURATION"
value="AT_DURATION_IN_MS"/>.
 </calcclass>
</calcattr>"

PPM CUSTOMIZING

81

In this example, the attribute calculator identifies at all functions of a process instance the

value of the AT_DURATION_IN_MS attribute, interprets the value as a value in milliseconds,

and converts it into seconds. The result is rounded to full seconds and written to the

AT_KI_DURATION attribute.

A precondition for using the calculator class is that the source attribute (in the example:

AT_DURATION_IN_MS) be of the TEXT or DOUBLE type and the target attribute (in the

example: AT_KI_DURATION) be of the TIMESPAN type.

7.1.3.1.16 Mark as large EPC

The ZAttributeCalculatorFunctionCount attribute calculator writes the number of function

nodes in the EPC to a configurable attribute at the process level.

Example
<calcattr name="AT_FCT_COUNT" type="PROCESS" >

<calcclass name="com.idsscheer.ppm.server.keyindicator.
 attributecalculator.ZAttributeCalculatorFunctionCount">
</calcclass>

</calcattr>

There is no calculation for aggregated EPCs.

Further information on How to handle large EPCs is available in the documentation PPM

Data Import.

7.1.3.2 Operands

Operands provide the input values (parameters) for calculation rules. The attribute calculator

differentiates between three types of operators: Set of values, Value and Constant.

7.1.3.2.1 Set of values (XML element attribute)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <attribute name="..." nodetype="..."
 objectname="..." onerror="..."/>
 ...

PPM CUSTOMIZING

82

 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

The attribute XML element returns a set of attribute values as its result. It contains all object

attribute values (nodetype not equal to PROCESS) specified in the process instance for the

specified attribute.

For process instance attributes (nodetype="PROCESS"), the set of values only contains the

value of the attribute specified for the instance.

If the attribute is not specified within the process instance, the set of values is empty.

XML tag Description

name Internal name of the attribute

If the attribute name is specified with a * placeholder

at the end, the values of all attributes whose names

begin with the specified string are included in the set

of results.

nodetype Attribute type: Function (OT_FUNC) or process

instance attribute (PROCESS)

objectname

(optional)

For function attributes (nodetype="OT_FUNC") the

set of values can be limited to attribute values for

the specified object name.

If this is specified as the object name, the attribute

value is retrieved for only the function for which the

calculation is currently being executed.

If like is specified as the object name, the attribute

value of all functions with the same name is

retrieved.

PPM CUSTOMIZING

83

XML tag Description

onerror

(optional)

Controls the behavior of the Measure calculator if no

set of attribute values can be retrieved:

EXIT_WARNING: Cancels the current attribute

calculation and outputs a warning to the log.

EXIT_NO_WARNING: Cancels the current attribute

calculation with no output of a warning to the log.

CONTINUE: Default value. The current attribute

calculation is continued with an empty set. The

superordinate operators determine error handling

procedures. There is no output in the log.

Warning

Specifying an object name of this or like in the objectname XML attribute is only permitted

for the calculation of function attributes (nodetype="OT_FUNC").

Example 1

The set of values contains all AT_KI_FDLZ attribute values (function cycle time) for

functions that have the same name (AT_OBJNAME_INTERN function attribute) as the

currently calculated function.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_KI_FDLZSUM" type="OT_FUNC">
 <calculation>
 <sum>
 <attribute name="AT_KI_FDLZ" nodetype="OT_FUNC"
 objectname="like"/>
 </sum>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

Example 2

The values of all attributes whose names begin with AT_SALES_VOLUME_ are taken into

account.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...

PPM CUSTOMIZING

84

 <calcattr name="AT_KI_XXX" type="PROCESS">
 <calculation>
 <sum>
 <attribute name="AT_SALES_VOLUME_*"
 nodetype="OT_FUNC"/>
 </sum>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

Pattern matching of the internal attribute names is subject to the following limitations:

 Placeholders are not permitted in filtered attributes (filteredattribute XML element) as

this operand returns a single attribute value and only relates to a single attribute.

 The placeholder * is only supported at the end of an attribute name.

 The attributes affected by pattern matching must be of the same data type.

7.1.3.2.2 Values (XML element filteredattribute)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <filteredattribute name="..." nodetype="..."
 objectname="..." filter="..." onerror="..."/>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

To calculate a concrete value from a set of values, all of the mathematical functions

presented in chapter Operators producing a value (page 106) can be used, which deliver a

specific value as the result. Alternatively, you can use the filteredattribute XML element to

calculate a specific value from a set of attribute values.

The entries for name, nodetype, objectname, and onerror correspond to those for the

attribute XML element.

PPM CUSTOMIZING

85

XML tag Description

name Internal name of attribute

Use of pattern matching is not supported with the

filteredattribute XML element, as it relates to a single

attribute only.

nodetype Attribute type: Function attribute (OT_FUNC), process

instance attribute (PROCESS), or

relation attribute (RELATION)

objectname

(optional)

For function attributes (nodetype="OT_FUNC") the

set of values can be limited to attribute values for the

specified object name.

For relation attributes (nodetype="RELATION"), the

following values are permitted:

this

The currently calculated attribute (calcattr name="..."

type="RELATION" relname="REL_...") is searched at

the relation.

source

The source object of the relation is searched for the

attribute.

target

The target object of the relation is searched for the

attribute.

filter

(optional)

Filter that is used to select the element from the set of

values (not for objectname="this"):

EARLY

The attribute value is transferred for the object for

which one of the AT_START_TIME and

AT_END_TIME attributes gives the earliest time

overall.

LATEST

The attribute value is transferred for the object for

which one of the AT_START_TIME and

AT_END_TIME attributes gives the latest time overall.

PPM CUSTOMIZING

86

XML tag Description

onerror

(optional)

Controls the behavior of the Measure calculator if no

attribute value can be identified:

EXIT_WARNING: Cancels the current attribute

calculation and outputs a warning to the log.

EXIT_NO_WARNING: Cancels the current attribute

calculation with no output of a warning to the log.

CONTINUE: Default value. The current attribute

calculation is continued with NULL. The superordinate

operators determine error handling procedures. There

is no output in the log.

By specifying the object type (nodetype), attributes with the same name in the process

instance and for objects belonging to the process instance can be differentiated.

7.1.3.2.3 Constants (XML element constant)

The value of a constant is specified in the CDATA section of the <dataitem> XML element.

The following example defines a time span constant of ten minutes:

<constant>
 <dataitem>
 10 MINUTE
 <datatype name="TIMESPAN"></datatype>
 </dataitem>
</constant>

If the entries for the data type and value of the constants are correct, possible entries in the

value attribute for the <dataitem> element are ignored. The following definition creates a

constant of two hours:

<constant>
 <dataitem value="9">
 2 HOUR
 <datatype name="TIMESPAN"></datatype>
 </dataitem>
</constant>

If the entry in the CDATA section of the <dataitem> element returns no value or a value with

an invalid data type, it is ignored. Instead, the entries in the value XML attribute are

processed. In the following example, the value of the constant with the DOUBLE data type is

specified, although the LONG data type is expected. The incorrect value entry is ignored and

the value of the value attribute ("2") is written to the constant instead:

PPM CUSTOMIZING

87

<constant>
 <dataitem value="2">
 4.0
 <datatype name="LONG"></datatype>
 </dataitem>
</constant>

If the value specified in the value attribute does not match the expected data type, the

calculation is canceled:

<constant>
 <dataitem value="2.4">
 4.0
 <datatype name="LONG"></datatype>
 </dataitem>
</constant>

In the following example the calculation is canceled, as the data type and the value specified

do not match and there is no entry in the value XML attribute:

<constant>
 <dataitem>
 4.0
 <datatype name="LONG"></datatype>
 </dataitem>
</constant>

A constant must always be specified with the unit that is permissible for the attribute data

type. The data type must be known in the PPM system.

Numerical constants consist of the specification of the value with a unit that is permissible for

the data type and the data type itself.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <constant>
 <dataitem>
 10 MINUTE
 <datatype name="TIMESPAN"></datatype>
 </dataitem>
 </constant>
 ...
 </calculation>
 </calcattr>

 ...

</keyindicatorconfig>

PPM CUSTOMIZING

88

XML element Description

dataitem value Value of constant with unit

datatype name Name of the data type. Both internal and

user-defined data types can be used.

Alphanumeric constants are specified as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <constant>
 <dataitem>
 Constant text
 <datatype name="TEXT"/>
 </dataitem>
 </constant>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

7.1.3.2.4 Determining attribute values

Attribute values both with and without an object reference can be used for attribute

calculation.

7.1.3.2.5 Attribute values without object reference

The specified attribute is used for all process instance objects of the object type specified by

nodetype for which it is entered. This results in a set of values, which contains a number of

elements corresponding to the occurrence of the attribute.

Example
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...

PPM CUSTOMIZING

89

 <attribute name="AT_ABC" nodetype="OT_FUNC"/>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

The values of the AT_ABC attribute for all functions in the process instance currently being

calculated are included in the set of values.

7.1.3.2.6 Attribute values with object reference

The specified attribute is only used for the functions (nodetype="OT_FUNC") with the

specified name (objectname"FCT_..."). (The object name specified with objectname

corresponds to the value of the AT_OBJNAME_INTERN function attribute.) Once again, a set

of values containing more than one element can result as the specified object can occur

several times in the process instance.

Example 1

The values of the AT_AUFNR attribute for all functions in the process instance currently

being calculated with the name FCT_CREATE_ORDER are included in the set of values.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="..." type="...">
 <calculation>
 ...
 <attribute name="AT_AUFNR" nodetype="OT_FUNC
 objectname="FCT_AUFTRAG_ANLEGEN"/>
 ...
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

The color of functions or events in the EPC view can be specified using the default

AT_BGND_COLOUR attribute. The following calculation rule assigns a red color to all

functions with the internal name SAP.WAUS:

<calcattr name="AT_BGND_COLOUR" type="OT_FUNC"
 objectname="SAP.WAUS">
 <calculation>
 <constant>
 <dataitem>
 <datatype name="TEXT">255,0,0</datatype>
 </dataitem>
 </constant>

PPM CUSTOMIZING

90

 </calculation>
</calcattr>

This calculation rule can be used within a conditional attribute calculation, for example. The

relevant color value is specified as an RGB value. Particular objects or object types can also be

assigned a color in attribute mapping.

Example 2

The calculation rule totals the cycle time for the function (AT_KI_FDLZ) for functions with

the same name (identical value for the AT_OBJNAME_INTERN attribute).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_KI_FDLZSUM" type="OT_FUNC">
 <calculation>
 <sum>
 <attribute name="AT_KI_FDLZ" nodetype="OT_FUNC"
 objectname="like"/>
 </sum>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

Warning

Specifying an object name or the options this or like in the objectname XML attribute is only

permitted for the calculation of function attributes (OT_FUNC).

To use an operator that expects single values as an operand (for example, <plus>) with an

operand that returns sets of values (for example, <attribute>), you need to use suitable

operators to retrieve a single value from a set of values (for example, <min> or <max>).

Alternatively, you can use the <filteredattribute> XML element to retrieve one value from a

set of values to be used for the subsequent attribute calculation.

7.1.3.3 Conditional attribute type access

Within a calculation rule for calculation of a function attribute, you can limit the set of

attribute values to be taken into account by specifying a condition relating to other attribute

types for the same function (objectname="this"). To configure the condition, you need to

use a Boolean operator as the root operator (see chapter Logical operators (page 113)). The

condition can be nested at any depth. If the condition check results in the value TRUE, the

value of the attribute type for which the condition is defined is included in the subsequent

calculation.

You can specify conditions for <attribute> and <filteredattribute>.

PPM CUSTOMIZING

91

Example

From the set of values for the AT_HRMODUL function attribute, only those attribute type

values of functions for which the AT_VORG_TYPE attribute type is also specified

(objectname="this") with the value 019 are to be taken into account.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_KI_HRMODUL" type="PROCESS">
 <calculation>
 <max>
 <attribute name="AT_HRMODUL" nodetype="OT_FUNC">
 <in>
 <constant>
 <dataitem>
 019
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
 <attribute name="AT_VORG_TYPE"
 nodetype="OT_FUNC" objectname="this"/>
 </in>
 </attribute>
 </max>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

Define conditional attribute type access in PPM Customizing Toolkit to prevent syntax errors.

You can create the corresponding calculation rules in the Measures and dimensions module

using the Calculated attribute types menu. In particular, this prevents incorrect use of the

attribute and filteredattribute operands with the corresponding logic operators.

7.1.3.4 Operators

In calculation rules for attribute types or calculation functions, the individual operand types

(sets of values, values, constants) are linked to one another using operators. When linking

attribute types, if all operands have the same data type, the results of attribute calculations

are returned as this data type.

For each operator, you can use the mode XML attribute to specify how exceptions are to be

handled (for example, <addtimespan mode="PPM4">). Valid values are PPM3 for the

behavior up to and including PPM 3.2.1 and PPM4 for the more fault-tolerant behavior from

PPM 4.0 onward.

For reasons of backwards compatibility, the default value is PPM3.

PPM CUSTOMIZING

92

In calculation rules that you create using PPM Customizing Toolkit the operators used are

assigned the value PPM4 by default.

The calculation and error behavior of the two different modes is described for each operator

starting from chapter Mathematic operators (page 94).

In your attribute type calculations, define a default return value defaultvalue, which is

assigned to the attribute type to be calculated if the attribute calculation fails.

Warning

Do not combine numerical values with non-numerical values in a calculation rule (for example,

TEXT with DOUBLE), as such calculation rules lead to the calculation being canceled.

Numerical data types can be freely combined with one another (for example, using the set

operator). Values are always given the base unit for the attribute type. For attribute type

calculations with mixed numerical data types (for example, DOUBLE, TIMESPAN,

FACTORYTIMESPAN) all values are used without units and the result is saved as the DOUBLE

data type. You can then save this value in the relevant base unit as a PPM target attribute of

another data type.

An operation is specified in the form of inverted Polish notation, that is, the operator type is

specified first, followed by the operands. In XML notation, it looks like this:

<operator 1>
 <operand m>
 ...
 </operand m>
 <operand m+1>
 ...
 </operand m+1>
 <operator 2>
 <operand n>
 ...
 </operand n>
 <operand n+1>
 ...
 </operand n+1>
 </operator 2>
</operator 1>

The operator XML element returns the calculated numerical value (numerical result of the

operands linked by the operator). The unit for the result is determined by the data type of the

attribute type to which the result value is assigned. Operators themselves can be part of a

higher-level operator.

Example

Calculation of the circumference of a circle with a radius of 6

(Circumference = 2 * p * radius):

 <times>

PPM CUSTOMIZING

93

 <constant>
 <dataitem value="2">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 <constant>
 <dataitem value="3.1415">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 <constant>
 <dataitem value="6">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 </times>

An alternative option leading to the same result is to create a set from the operands and to

multiply all elements in the set by one another:

<product>
 <set>
 <constant>
 <dataitem value="2">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 <constant>
 <dataitem value="3.1415">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 <constant>
 <dataitem value="6">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 </set>
<product>

The operators described in the following chapters are available for the calculation of attribute

type values.

PPM CUSTOMIZING

94

7.1.3.4.1 Mathematic operators

The following operators are available: plus, minus, timespan, times, divide, abs, div, mod,

squareroot, and round.

ADDITION

XML tag: plus

Operands: at least two values

Synopsis: <plus>
 <value 1>
 <value 2>
 <value n>
</plus>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,

FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value

Result type: Operand data type with identical data type.

DOUBLE for mixed numerical data types that, in this

case, are automatically converted to DOUBLE.

Description: Adds the values specified in the XML element

Calculation

(PPM3)

Result Sum of all operands

Error If at least one operand equals NULL or at

least one operand is of a non-numerical

data type

Calculation

(PPM4)

Result NULL if at least one operand equals NULL,

otherwise sum of all operands.

Error Only if the data type is non-numerical

Example: -

SUBTRACTION

XML tag: minus

Operands: exactly two values

PPM CUSTOMIZING

95

Synopsis: <minus>
 <value 1>
 <value 2>
</minus>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,

FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value (difference)

Result type: Operand data type with identical data type.

DOUBLE for mixed numerical data types that, in this

case, are automatically converted to DOUBLE.

Description: Subtracts value 2 from value 1

Calculation

(PPM3)

Result Result of subtracting operand 2 from

operand 1

Error If at least one operand equals NULL or at

least one operand is of a non-numerical

data type

Calculation

(PPM4)

Result NULL if at least one operand is equal to

NULL, otherwise result of subtracting

operand 2 from operand 1

Error Only if the data type is non-numerical

Example: -

TIME SPAN

XML tag: timespan

Operands: Exactly two values (points in time)

Synopsis: <timespan>
 <time 1>
 <time 2>
</timespan>

Operands: TIME (TIMESTAMP, DATE)

Result: Value (time span)

Result type: TIMESPAN or

FACTORYTIMESPAN when using a factory calendar

PPM CUSTOMIZING

96

Description: Calculates the time difference between time 1 and time

2. If the difference is negative, the value 0 is returned.

To use the factory calendar to calculate the time

difference, give the optional type XML element the

value FACTORYCALENDAR.

Default value: NORMAL

Calculation

(PPM3)

Result Time span between operand 1 and operand

2 (operand 1 minus operand 2)

Error If at least one operand equals NULL or at

least one is of an invalid data type

Calculation

(PPM4)

Result NULL if at least one operand is equal to

NULL, otherwise time span between

operand 1 and operand 2 (operand 1 minus

operand 2)

Error Only if data type is invalid

Example: <timespan type="FACTORYCALENDAR"

directoryname="custom/client/factorycal"
 attributename="AT_FC_XYZ">
 <max>
 <attribute name="AT_GOODS_RECEIPT_DATE"
 nodetype="OT_FUNC"
 objectname="SAP.MM_WE_ANLEG"/>
 </max>
 <min>
 <attribute name="AT_END_TIME"
 nodetype="OT_FUNC"
 objectname="SAP.MM_BANF_ANLEG"/>
 </min>
</timespan>

If you are using a factory calendar you can also calculate negative time spans by specifying

the optional XML attribute negfactorytimespan="TRUE".

Default value: FALSE

You can also perform time span calculations based on external factory calendars by

specifying a factory calendar XML file. In the optional directoryname XML attribute, specify

the directory containing the factory calendar to be used. The attributename attribute is used

to specify the name of the attribute type containing the name of the factory calendar file to

be used. The attribute type must be specified for the corresponding object or process

instance. The two XML attributes must always be specified together.

PPM CUSTOMIZING

97

MULTIPLICATION

XML tag: times

Operands: at least two values

Synopsis: <times>
 <value 1>
 <value 2>
 <value n>
</times>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,

FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value (product)

Result type: Operand data type with identical data type.

DOUBLE for mixed numerical data types that, in this

case, are automatically converted to DOUBLE.

Description: Multiplies the values specified in the XML element.

Calculation

(PPM3)

Result Result of multiplying operands 1 to n

Error If at least one operand equals NULL or at

least one operand is of a non-numerical

data type

Calculation

(PPM4)

Result NULL if at least one operand is equal to

NULL, otherwise result of multiplying all

operands

Error Only if the data type is non-numerical

Example: -

DIVISION

XML tag: divide

Operands: exactly two values

Synopsis: <divide>
 <value 1>
 <value 2>
</divide>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,

FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

PPM CUSTOMIZING

98

Result: Value (quotient)

Result type: Always DOUBLE

Description: Divides value 1 by value 2.

Calculation

(PPM3)

Result Result of dividing operand 1 by operand 2

Error If at least one operand equals NULL or at

least one operand is of an invalid data type,

or operand 2 = 0

Calculation

(PPM4)

Result NULL if at least one operand is equal to

NULL, otherwise result of dividing operand

1 by operand 2

Error If at least one operand is of an invalid data

type or operand 2 = 0

Example: -

AMOUNT

XML tag: abs

Operands: exactly one value

Synopsis: <abs>
 <value 1>
</abs>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,

FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value (absolute value)

Result type: Operand data type

Description: Returns the amount of a value.

Calculation

(PPM3)

Result Absolute operand value

Error If an operand equals NULL or is of a

non-numerical data type

Calculation

(PPM4)

Result NULL if operand equals NULL, otherwise

absolute operand value

Error Only if the data type is non-numerical

Example: -

PPM CUSTOMIZING

99

INTEGER DIVISION

XML tag: div

Operands: exactly two integer values

Synopsis: <div>
 <value 1>
 <value 2>
</div>

Operands: LONG

Result: Integer value of division

Result type: LONG

Description: Returns the integer value for how often value 2 is

contained in value 1. Remainders are ignored. For

proper fractions, 0 is returned.

Calculation

(PPM4 only)

Result NULL if at least one operand is equal to

NULL, otherwise integer result of dividing

operand 1 by operand 2

Error If at least one operand is of an invalid data

type (not LONG) or operand 2 = 0

Example: <div>
 <max>
 <attribute name="AT_COST"
 nodetype="FUNCTION"/>
 </max>
 <constant>
 <dataitem>
 5
 <datatype name="LONG">
 Long
 </datatype>
 </dataitem>
 </constant>
</div>

MODULO

XML tag: mod

Operands: exactly two integer values

Synopsis: <mod>
 <value 1>
 <value 2>
</mod>

PPM CUSTOMIZING

100

Operands: LONG

Result: Integer remainder

Result type: LONG

Description: Returns the remainder of an integer division of value 1

by value 2. For proper fractions, the value of the first

operand is returned. If value 1 = value 2, 0 is returned.

Calculation

(PPM4 only)

Result NULL if at least one operand is equal to

NULL, otherwise remainder of integer

division of operand 1 by operand 2

Error If at least one operand is of an invalid data

type (not LONG) or operand 2 = 0

Example: <mod>
 <filteredattribute name="AT_COST"
 nodetype="FUNCTION"/>
 <constant>
 <dataitem>
 3
 <datatype name="LONG">Long</datatype>
 </dataitem>
 </constant>
</mod>

SQUARE ROOT

XML tag: squareroot

Operands: exactly one value

Synopsis: <squareroot>
 <value 1>
</squareroot >

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,

FACTORYTIMESPAN, FREQUENCY, PERCENTAGE, and

user-defined types, for example, COST)

Result: Square root

Result type: DOUBLE data type

Description: Calculates the square root of the value entered.

PPM CUSTOMIZING

101

Calculation

(PPM4 only)

Result NULL if the operand equals NULL,

otherwise the square root of the numeric

operand

Error If the operand has an invalid data type (not

numerical) or if the value of the operand is

less than 0

Example: -

ROUND

XML tag: round

Operands: A single value of the TIMESPAN type

Synopsis: <round>
 <value>
</round>

Operands: TIMESPAN

Result: Rounded time span value

Result type: TIMESPAN

XML

attributes

scale (MINUTE|HOUR|DAY|WEEK|MONTH|YEAR)

roundingkind (ROUND|FLOOR|CEIL) "ROUND"

Description: Returns the rounded value for time spans. Only values

of the TIMESPAN data type can be rounded. The scale

to be used for rounding must be specified.

The following rounding methods exist:

ROUND (decimal places < 5 rounded down, >= 5

rounded up)

CEIL (rounding up to the next whole number regardless

of the value of the decimal place)

FLOOR (rounding down to the current whole number

regardless of the value of the decimal place)

The default value is ROUND.

Calculation

(PPM4 only)

Result The rounded value in the specified scale.

Error If operand is of an invalid data type or an

invalid number of operands.

PPM CUSTOMIZING

102

Example: <round scale="MINUTE" roundingkind="CEIL">
 <constant>
 <dataitem value="4284.0">
 1,19
 <datatype name="TIMESPAN">
 Time span
 </datatype>
 <scale name="HOUR" factor="3600.0">
 Hours
 </scale>
 </dataitem>
 </constant>
</round>

The time span value 1.19 hours is converted to 71.4

minutes as specified by the scale and is rounded up to

72 minutes (return value) in line with the specified

rounding method.

NULL VALUE

XML tag: nullvalue

Operands: exactly two values

Synopsis: <nullvalue>
 <value 1>
 <value 2>
</nullvalue>

Operands: Any data type, both operands must be of the same

data type.

Result: Value of the first operand if it is not null, otherwise

value of the second operand

Result type: Operand data type

Description: Replaces the possibly missing value of the first

operator (value null) with the value of the second

operator. If the first operand supplies a value, this

value will be returned, otherwise the value of the

second operand will be returned.

If both operators do not supply any value, null is

returned as a value. This means that the second

operator should always supply a value.

Calculation

(PPM4 only)

Result Value of the first operand if it is not null,

otherwise value of the second operand.

PPM CUSTOMIZING

103

Error When operands have different data types

Example: <nullvalue>
 <subtext beginindex="3">
 <filteredattribute name="AT_XYZ"

nodetype="PROCESS"/>
 </subtext>
 <constant>
 <dataitem>
 ABC
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
</nullvalue>

If the subtext operator does not return any value, the

constant character string ABC is returned.

7.1.3.4.2 Operators resulting in a set of values

The following operators are available: set, union, intersect, removeduplicates.

SET CREATION

XML tag: Set

Operands: at least one value

Synopsis: <set>
 <value 1>
 ...
 <value n>
</set>

Operands: All data types, but for non-numerical data types, a

uniform data type within the list of operands is

necessary. Different numerical data types are

automatically converted into the DOUBLE data type.

Result: Set of values

Result type: DOUBLE for mixed numerical operands, data type of

first operand for non-numerical data types

Description: Creates a set of values from the specified values.

PPM CUSTOMIZING

104

Calculation

(PPM3/PPM4)

Result Empty set if all operands return NULL, that

is, the result set never contains NULL

Error If at least one operand is of an invalid data

type (set of values or data type not

identical with first operand)

Example: <set>
 <constant>
 <dataitem value="2">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 <value 1>
 <value 2>
 <value n>
</set>

SET UNION

XML tag: Union

Operands: At least two sets of values (<attribute ... /> or

<set>...</set> or <union>...</union> or

<intersect>...</intersect>)

Synopsis: <union>
 <Set of values 1>
 <Set of values 2>
 ...
 <Set of values n>
</union>

Operands: all data types, but not a mixture of numerical and

non-numerical data types

Result: Set of values

Result type: DOUBLE for mixed numerical operands, data type of

first operand for non-numerical data types

Description: Creates the set union of the specified sets of values.

Calculation

(PPM3)

Result Empty set if all operands are empty sets

Error If at least one operand is of an invalid data

type or at least one operand equals NULL

Calculation

(PPM4)

Result Empty set if all operands are empty sets.

NULL if at least one operand equals NULL.

PPM CUSTOMIZING

105

Error If at least one operand is of an invalid data

type

Example: <union>
 <attribute name="AT_START_TIME"
nodetype="PROCESS"/>
 <attribute name="AT_END_TIME"
nodetype="PROCESS"/>
 <attribute name="AT_START_TIME"
nodetype="OT_FUNC"/>
 <attribute name="AT_END_TIME"
nodetype="OT_FUNC"/>
</union>

INTERSECTION

XML tag: Intersect

Operands: at least two sets of values

Synopsis: <intersect>
 <Set of values 1>
 <Set of values 2>
 ...
 <Set of values n>
</intersect>

Operands: all data types, but not a mixture of numerical and

non-numerical data types

Result: Set of values containing all elements contained in all

initial sets

Result type: DOUBLE for mixed numerical operands,

data type of first operand for unmixed data types

Description: Creates the intersection of the specified sets of values.

Calculation

(PPM3)

Result Empty set if one operand is an empty set.

Error If at least one operand is of an invalid data

type or at least one operand equals NULL

Calculation

(PPM4)

Result Empty set if one operand is an empty set.

NULL if at least one operand equals null.

Error If at least one operand is of an invalid data

type

Example: -

PPM CUSTOMIZING

106

DUPLICATE REMOVER

XML tag: Removeduplicates

Operands: exactly one set of values

Synopsis: <removeduplicates>
 <Set of values>
</removeduplicates>

Operands: Any data types

Result: Set of values

Result type: Operand data type

Description: Removes elements with identical values from a set of

values.

Calculation

(PPM4 only)

Result Set of values containing all elements

contained in the initial set, but each one

only once. Empty set if operand is an empty

set.

Error If at least one element in the set of values

is of an invalid data type

Example: Counting the plants involved in the process:

<card>
 <removeduplicates>
 <attribute name="AT_WERK"
nodetype"OT_FUNC" />
 </removeduplicates>
</card>

7.1.3.4.3 Operators producing a value

The following operators are available: sum, product, card, min, max, mean, convert.

SUM

XML tag: Sum

Operands: exactly one set of values

Synopsis: <sum>
 <Set of values>
</sum>

PPM CUSTOMIZING

107

Operands: Numerical data types (LONG, DOUBLE,

TIMESPAN, FACTORYTIMESPAN, FREQUENCY,

PERCENTAGE)

Result: Value

Result type: Data type of set of values used, for mixed data

types within set always DOUBLE

Description: Creates the sum of all elements in the set of

values.

Calculation

(PPM3/PPM4)

Result Sum of values contained in the set of

values. NULL if the transferred set is

empty.

Error If at least one element in the set of

values is of an invalid data type.

Example: -

PRODUCT

XML tag: Product

Operands: exactly one set of values

Synopsis: <product>
 <Set of values>
</product>

Operands: Numerical data types (LONG, DOUBLE,

TIMESPAN, FACTORYTIMESPAN, FREQUENCY,

PERCENTAGE)

Result: Value

Result type: Data type of set of values used, for mixed data

types within set always DOUBLE

Description: Creates the product of all elements in the set of

values.

Calculation

(PPM3/PPM4)

Result Multiplication of values contained in

the set of values. NULL if the

transferred set is empty.

PPM CUSTOMIZING

108

Error If at least one element in the set of

values is of an invalid data type.

Example: -

CARDINALITY

XML tag: Card

Operands: exactly one set of values

Synopsis: <card>
 <Set of values>
</card>

Operands: All data types of the set of values specified

Result: Value

Result type: always LONG

Calculation

(PPM3/PPM4)

Result Calculates the total number of

elements in the set of values. For an

empty set, the return value is 0.

Error None

Example: -

MINIMUM

XML tag: Min

Operands: exactly one set of values

Synopsis: <min>
 <Set of values>
</min>

Operands: Numerical data types and TIME (TIMESTAMP,

DATE), DAY, TIMEOFDAY

Result: Value

Result type: Data type of set of values

Description: Returns the smallest value in the set of values.

Calculation Result NULL if the set of values is empty

PPM CUSTOMIZING

109

(PPM3/PPM4) Error None

Example: -

MAXIMUM

XML tag: Max

Operands: exactly one set of values

Synopsis: <max>
 <Set of values>
</max>

Operands: Numerical data types and TIME (TIMESTAMP, DATE),

DAY, TIMEOFDAY

Result: Value

Result type: Data type of set of values

Description: Returns the greatest value in the set.

Calculation

(PPM3/PPM4)

Result NULL if the set of values is empty

Error None

Example: -

MEAN

XML tag: Mean

Operands: exactly one set of values

Synopsis: <mean>
 <Set of values>
</mean>

Operands: Numerical data types (LONG, DOUBLE, TIMESPAN,

FACTORYTIMESPAN, FREQUENCY, PERCENTAGE)

Result: Value

Result type: Operand data type

Calculation

(PPM3)

Result Mean of the numerical values contained in

the set. NULL if operand is equal to an

empty set.

PPM CUSTOMIZING

110

Error If the data type is invalid or at least one

operand equals NULL.

Calculation

(PPM4)

Result Mean of the numerical values contained in

the set. NULL if operand is an empty set or

equals NULL.

Error If at least one element in the set of values

is of an invalid data type.

Example: <mean>
 <union>
 <attribute name="AT_ANZAHL_POS1"
nodetype="OT_FUNC"/>
 <attribute name="AT_ANZAHL_POS2"
nodetype="OT_FUNC"/>
 </union>
</mean>

DATA TYPE CONVERSION

XML tag: convert

Operands: exactly one value

Synopsis: <convert datatype="...">
 <value>
</convert>

Operands: TEXT or numerical data type, returns the input value

for the conversion.

Attribute: The datatype attribute specifies the data type into

which the input value is to be converted.

Result: Value converted into the data type specified

PPM CUSTOMIZING

111

Result type: LONG, DOUBLE, FREQUENCY, BOOLEAN, TEXT, TIME,

TIMESPAN, FACTORYTIMESPAN, DAY, PERCENTAGE

PPM CUSTOMIZING

112

Description: Conversion of a numerical data type (for example,

LONG, DOUBLE, TIMESPAN, FACTORYTIMESPAN,

PERCENTAGE) into another numerical data type.

Conversion of the TEXT data type into one of these

data types: LONG, DOUBLE, BOOLEAN, TIMESPAN, or

FREQUENCY.

After the conversion, the result is written in base

scaling to the result attribute.

The internal PPM format is used for conversion. You

cannot specify a custom format.

Conversion of the LONG data type to TEXT, with

leading zeros and separators being removed. The

result of the conversion is the converted number

without separators in one string. In the example below,

the LONG value 000300080191 is converted into the

TEXT value 300080191.

<convert datatype="TEXT">
 <constant>
 <dataitem>
 000300080191
 <datatype name="LONG"/>
 </dataitem>
 </constant>
</convert>

It is possible to convert any data type to TEXT, for

example:

 CONVERT(DOUBLE(-300080191)) ->

TEXT("3.00080191E8")

 CONVERT(TIME(07.01.1971 00:01)) -> TEXT("7.1.1971

0:01")

 CONVERT(TIME(07.01.2000)) -> TEXT("07.1.1971")

 CONVERT(BOOLEAN(1)) -> TEXT("FALSE")

(everything that is not true is false)

The scaling used for the output corresponds to the one

at the object, for example:

 convert(<dataitem>1 YEAR<datatype

name='TIMESPAN'/></dataitem>) -> TEXT("1.0

YEAR")

 convert(<dataitem>1 YEAR<datatype

name='TIMESPAN'/><scale

PPM CUSTOMIZING

113

 name='MONTH'/></dataitem>) ->

TEXT("12.166666666666666 MONTH") (== 365 days/30

days)

Calculation

(PPM4 only)

Result Returns the converted value of the

operand. NULL if the operand returns NULL

Error If conversion fails

Example: <convert datatype="LONG">
 <filteredattribute name="AT_ABC"
 nodetype="PROCESS"/>
</convert>

An assumed value of 456 for the AT_ABC attribute of

TEXT type is converted to the LONG data type.

7.1.3.4.4 Logical operators

The following operators are available: eq, eqset, lt, gt, gteq, lteq, ne, exists, filled, in, and, or,

xor, not, containstext.

EQUALITY (VALUE)

XML tag: eq

Operands: at least two values

Synopsis: <eq>
 <Value 1>
 <Value 2>
 ...
 <Value n>
</eq>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

Description: All specified values equal returns TRUE.

Calculation

(PPM3)

Result TRUE if operands 1 to n have the same data

type and value, otherwise FALSE.

Error If one operand is NULL.

PPM CUSTOMIZING

114

Calculation

(PPM4)

Result TRUE if operands 1 to n have the same data

type and value, otherwise FALSE. NULL if

an operand is NULL.

Error None

Example: <eq>
 <timespan type="NORMAL">
 <max>
 <attribute name="AT_CUSTDATE_WISH"
nodetype="PROCESS"
 onerror="EXIT_NO_WARNING"/>
 </max>
 <min>
 <attribute name="AT_END_TIME"
nodetype="OT_FUNC"
 objectname="SAP.WAUS"
onerror="EXIT_NO_WARNING"/>
 </min>
 </timespan>
 <constant>
 <dataitem value="0">
 <datatype name="TIMESPAN"/>
 </dataitem>
 </constant>
</eq>

EQUALITY (VALUE)

XML tag: ne

Operands: at least two values

Synopsis: <ne>
 <Value 1>
 <Value 2>
 ...
 <Value n>
</ne>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

Description: Inequality of all specified values returns TRUE

Calculation

(PPM4)

Result TRUE if all operands 1 to n are not equal (for

example, Operand 1 != Operand 2),

otherwise FALSE. NULL if an operand is

NULL.

PPM CUSTOMIZING

115

Error None

Example: <ne>
 <timespan type="NORMAL">
 <max>
 <attribute name="AT_CUSTDATE_WISH"
 nodetype="PROCESS"
 onerror="EXIT_NO_WARNING"/>
 </max>
 <min>
 <attribute name="AT_END_TIME"
 nodetype="OT_FUNC"
 objectname="SAP.WAUS"
 onerror="EXIT_NO_WARNING"/>
 </min>
 </timespan>
 <constant>
 <dataitem value="0">
 <datatype name="TIMESPAN"/>
 </dataitem>
 </constant>
</ne>

EQUALITY (SET OF VALUES)

XML tag: eqset

Operands: at least two sets of values

Synopsis: <eqset>
 <Set of values 1>
 <Set of values 2>
 ...
 <Set of values n>
</eqset>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

Description: Equality of all specified sets of values returns TRUE.

Operands 2 to n are compared one by one with

operand 1.

Calculation

(PPM3)

Result TRUE if the sets to be compared are of

equal size and all their values are identical,

otherwise FALSE.

Error If one operand is NULL.

PPM CUSTOMIZING

116

Calculation

(PPM4)

Result TRUE if the sets to be compared are of

equal size and all their objects are identical,

otherwise FALSE. NULL if an operand is

NULL.

Error None

Example: -

"LESS THAN" COMPARISON

XML tag: lt

Operands: exactly two values

Synopsis: <lt>
 <Value 1>
 <Value 2>
</lt>

Operands: Uniform numerical data type

Result: Logical value

Result type: BOOLEAN

Calculation

(PPM3)

Result TRUE if operand 1 and operand 2 are of the

same data type and operand 1 is less than

operand 2, otherwise FALSE.

Error If at least one operand equals NULL or at

least one is of an invalid data type

Calculation

(PPM4)

Result TRUE if operand 1 and operand 2 are of the

same data type and operand 1 is less than

operand 2, otherwise FALSE. NULL if at

least one operand equals NULL.

Error Only if data type is invalid

Example: -

"GREATER THAN" COMPARISON

XML tag: gt

Operands: exactly two values

PPM CUSTOMIZING

117

Synopsis: <gt>
 <Value 1>
 <Value 2>
</gt>

Operands: Uniform numerical data type

Result: Logical value

Result type: BOOLEAN

Calculation

(PPM3)

Result Returns TRUE if value 1 is greater than

value 2 and the operands are of a uniform

data type, otherwise FALSE.

Error If at least one operand equals NULL or at

least one operator is of an invalid data type.

Calculation

(PPM4)

Result Returns TRUE if value 1 is greater than

value 2 and the operands are of a uniform

data type, otherwise FALSE. NULL if at

least one operand equals NULL.

Error Only if data type is invalid

Example: -

"GREATER THAN OR EQUAL" COMPARISON

XML tag: gteq

Operands: exactly two values

Synopsis: <gteq>
 <Value 1>
 <Value 2>
</gteq>

Operands: Uniform numerical data type

Result: Logical value

Result type: BOOLEAN

Calculation

(PPM4)

Result Returns TRUE if value 1 is greater than or

equal to value 2 and the operands are of a

uniform data type, otherwise FALSE. NULL

if at least one operand equals NULL.

Error Only if data type is invalid

PPM CUSTOMIZING

118

Example: -

"LESS THAN OR EQUAL" COMPARISON

XML tag: lteq

Operands: exactly two values

Synopsis: <glteq>
 <Value 1>
 <Value 2>
</lteq>

Operands: Uniform numerical data type

Result: Logical value

Result type: BOOLEAN

Calculation

(PPM4)

Result Returns TRUE if value 1 is less than or equal

to value 2 and the operands are of a

uniform data type, otherwise FALSE. NULL

if at least one operand equals NULL.

Error Only if data type is invalid

Example: -

EXISTENCE CHECK

XML tag: exists

Operands: at least one attribute name (attribute, filteredattribute)

Synopsis: <exists>
 <Attribute 1>
 <Attribute 2>
 ...
 <Attribute n>
</exists>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

PPM CUSTOMIZING

119

Description: Returns TRUE if the specified attributes exist,

regardless of whether any values are assigned to the

attributes.

Calculation

(PPM3/PPM4)

Result TRUE if all specified attributes exist,

otherwise FALSE

Error None

Example: <exists>
 <attribute name="AT_ORDER_VOL"
nodetype="OT_FUNC"/>
</exists>

CONTENT CHECK

XML tag: filled

Operands: at least one value or a set of values

Synopsis: <filled>
 <Value 1>
 <Value 2>
 ...
 <Value n>
</filled>

or

<filled>
 <Set of values 1>
 <Set of values 2>
 ...
 <Set of values n>
</filled>

or

<filled>
 <Value 1>
 <Value 2>
 ...
 <Value n>
 <Set of values 1>
 <Set of values 2>
 ...
 <Set of values n>
</filled>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

PPM CUSTOMIZING

120

Calculation

(PPM3/PPM4)

Result TRUE if all relevant values or sets of values

are specified, otherwise FALSE

Error None

Example: -

CONTENT CHECK OF SETS

XML tag: in

Operands: 1. operand: Value or set of values

Operand 2: Set of values

Synopsis: <in>
 <Value 1>
 <Set of values 2>
</in>

or

<in>
 <Set of values 1>
 <Set of values 2>
</in>

Operands: All data types

Result: Logical value

Result type: BOOLEAN

Calculation

(PPM4 only)

Result TRUE if the value or set of values of the

first operand is contained in the set of

values specified by the second operand.

NULL if one operand returns NULL.

Error Only if data types are incompatible

PPM CUSTOMIZING

121

Example: <calcattr name="AT_KI_ABL" type="PROCESS">
 <calculation>
 <in>
 <constant>
 <dataitem>
 HR-ABL
 <datatype
name="TEXT">Text</datatype>
 </dataitem>
 </constant>
 <attribute name="AT_HRMODUL"
nodetype="OT_FUNC" />
 </in>
 </calculation>
</calcattr>

The in operator returns TRUE if there is an

AT_HRMODUL attribute with the value HR-ABL for at

least one function in the EPC.

LOGICAL AND

XML tag: and

Operands: at least two logical values

Synopsis: <and>
 <Logical value 1>
 <Logical value 2>
 ...
 <Logical value n>
</and>

Operands: BOOLEAN

Result: Logical value

Result type: BOOLEAN

Description: Returns TRUE, if all logical values are TRUE. The first

time an operand returns FALSE, evaluation of the

operand list is canceled and FALSE is returned.

Calculation

(PPM3)

Result TRUE if all operands return TRUE, otherwise

FALSE

Error If one operand returns NULL or at least one

operand is of an invalid data type

PPM CUSTOMIZING

122

Calculation

(PPM4)

Result TRUE if all operands return TRUE.

FALSE if one operand returns FALSE and all

preceding operands return TRUE.

NULL if one operand returns NULL and all

preceding operands return TRUE.

Error If at least one operand is of an invalid data

type (not BOOLEAN)

Example: -

LOGICAL OR

XML tag: or

Operands: at least two logical values

Synopsis: <or>
 <Logical value 1>
 <Logical value 2>
 ...
 <Logical value n>
</or>

Operands: BOOLEAN

Result: Logical value

Result type: BOOLEAN

Description: Returns TRUE if at least one logical value is TRUE. The

first time an operand returns TRUE, evaluation of the

operand list is canceled and TRUE is returned.

Calculation

(PPM3)

Result TRUE if one operand returns TRUE and all

preceding operands return NULL, otherwise

FALSE.

Error If one operand returns NULL and all other

operands return FALSE, or if at least one

operand is of an invalid data type

Calculation

(PPM4)

Result TRUE if one operand returns TRUE and all

preceding ones do not return NULL. FALSE

if all operands return FALSE. NULL if one

operand returns NULL and all preceding

operands return FALSE.

PPM CUSTOMIZING

123

Error If at least one operand is of an invalid data

type (not BOOLEAN)

Example: -

LOGICAL EXCLUSIVE OR

XML tag: xor

Operands: at least two logical values

Synopsis: <xor>
 <Logical value 1>
 <Logical value 2>
 ...
 <Logical value n>
</xor>

Operands: BOOLEAN

Result: Logical value

Result type: BOOLEAN

Description: Returns TRUE if exactly one logical value is TRUE.

Calculation

(PPM3)

Result TRUE if exactly one operand returns TRUE,

otherwise FALSE

Error If one operand returns NULL or at least one

operand is of an invalid data type

Calculation

(PPM4)

Result TRUE if exactly one operand returns TRUE.

FALSE if no operand or more than one

operand returns TRUE. NULL if at least one

operand returns NULL

Error If at least one operand is of an invalid data

type (not BOOLEAN)

Example: -

LOGICAL NOT

XML tag: not

Operands: exactly one logical value

PPM CUSTOMIZING

124

Synopsis: <not>
 <Logical value>
</not>

Operands: BOOLEAN

Result: Logical value

Result type: BOOLEAN

Description: Reverses the specified logical value.

Calculation

(PPM3)

Result TRUE if operand returns FALSE, otherwise

FALSE

Error If operand returns NULL or at least one

operand is of an invalid data type

Calculation

(PPM4)

Result TRUE if operand returns FALSE. FALSE if

operand returns TRUE. NULL if the operand

returns NULL

Error If operand is of an invalid data type (not

BOOLEAN)

Example: <not>
 <exists>
 <attribute name="AT_ORDER_VOL"
nodetype="OT_FUNC"/>
 </exists>
</not>

CHECKING FOR TEXT WITHIN TEXT

XML tag: containstext

Operands: Exactly two values of type TEXT

Synopsis: <containstext>
 <value 1>
 <value 2>
</containstext>

Operands: TEXT

Result: Logical value

Result type: BOOLEAN

PPM CUSTOMIZING

125

Calculation

(PPM4 only)

Result TRUE if the text returned by the second

operand is a sub-character string of the

value returned by the first operand,

otherwise FALSE. NULL if at least one

operand returns NULL

Error If at least one operand is of an invalid data

type (not TEXT)

Example: <containstext>
 <filteredattribute name="AT_ABCDEF"
 nodetype="OT_FUNC" objectname="this"
 onerror="EXIT_NO_WARNING"/>
 <constant>
 <dataitem>
 abc
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
</containstext>

Operator returns TRUE if the string abc is contained in

the value of the AT_ABCDEF attribute.

7.1.3.4.5 Conditional operator

The following operator is available: if - then - else

CONDITION CHECK WITH OPTIONAL BRANCH (ELSE)

XML tag: if - then [- else]

Operands: exactly one logical value

Synopsis: <if>
 <Logical value>
</if>
<then>
 <Value>
</then>
<else>
 <Value>
</else>

Operands: BOOLEAN

Result: Logical value - Value [- Value]

Result type: BOOLEAN - Operand data type [- Operand data type]

PPM CUSTOMIZING

126

Calculation

(PPM3/PPM4)

Result Value of second operand if the first

operand returns TRUE. Value of the 3rd

operand if the 1st operand returns FALSE.

NULL if 1st operand is FALSE and 3rd

operand is not defined.

Error If first operand is not of the BOOLEAN data

type

Example: <if>
 <exists>
 <filteredattribute name="AT_OS"
nodetype="OT_FUNC"
 objectname="SAP.WAUS
filter="LATEST"/>
 </exists>
 <then>
 <filteredattribute name="AT_CT"
nodetype="OT_FUNC"
 filter="EARLY"/>
 </then>
 <else>
 <filteredattribute name="AT_KT"
nodetype="OT_FUNC"
 filter="LATEST"/>
 </else>
</if>

If the condition is met (i. e. the AT_OS attribute is

specified for at least one function with the internal

name SAP.WAUS) the value of the AT_CT attribute is

passed on. If the condition is not met, the value of the

AT_KT attribute is used in the subsequent calculation.

7.1.3.4.6 String operators

The following operators are available: concat, subtext, indexof.

CONCATENATION OF STRINGS

XML tag: Concat

Operands: exactly one set of values (strings)

PPM CUSTOMIZING

127

Synopsis: <concat>
<Value set 1>

</concat>

Operands: TEXT

Result: Value (string)

Result type: TEXT

Calculation

(PPM3/PPM4)

Result Result of the concatenation of all strings

contained in the set of values. NULL if

operand is an empty set

Error If at least one value is of an invalid data

type

Example: -

EXTRACTION OF SUBSTRINGS

XML tag: Subtext

Operands: exactly one value (string)

Synopsis: <subtext beginindex="..." [endindex=" "]>
<Value>

</subtext>

Example

<subtext>
<Value>
<beginindex>...</beginindex>
<endindex>...</endindex>

</subtext>

You should only use one of the two variations outlined

(index specified either as an XML attribute or an XML

element).

Operands: TEXT

Result: Value (extracted string)

Result type: TEXT

Description: Extracts a substring from a string by specifying

positive indices (from the start of the string) or

negative indices (from the end of the string).

PPM CUSTOMIZING

128

Calculation

(PPM3)

Result Returns a substring of the string

transferred by the operand.

NULL if the specified indices are invalid

Error If operand is NULL or of an invalid data type

Calculation

(PPM4)

Result Returns a substring of the string

transferred by the operand.

NULL if the specified indices are invalid or

the operand is NULL

Error If data type is invalid (not TEXT)

Example: <subtext beginindex="-3" endindex="-1">
 <filteredattribute name="AT_XYZ"
 nodetype="OT_FUNC"/>
</subtext>

Example

<subtext>
 <beginindex>-3</beginindex>
 <endindex>-1</endindex>
 <filteredattribute name="AT_XYZ"
 nodetype="OT_FUNC"/>
</subtext>

Assuming the value ABCDE for the AT_XYZ attribute,

the substring CD is extracted.

IDENTIFY POSITION OF SUB-TEXT IN ANOTHER TEXT

XML tag <indexof>

Description Returns the index in a text (operand 1), where the first

occurrence of a sub-text (operand 2) is located,

starting at a specified index (operand 3).

Operands

(Position/

Data type)

1 / TEXT

2 / TEXT

[3 / LONG], optional, default value is 0

Calculation from PPM 9.0

PPM CUSTOMIZING

129

Calculation

(PPM4)

Result -1, if at least 1 operand equals NULL,

or if the substring is not found

Index of the first occurrence of the

text determined by operand 2 in the

text determined by operand 1 starting

from the index specified in operand 3

(like Java String.indexOf(String, int)).

Data type LONG

Exception If at least 1 operand has an invalid

data type or operand 3 < 0

Example <subtext mode="PPM4">
<filteredattribute name="AT_TEXT" … />
<beginindex>
 <indexof>
 <filteredattribute name="AT_TEXT" … />
 <constant>
 <dataitem>
 XYZ

<datatypename="TEXT">Text</datatype>
 </dataitem>
 </constant>
</beginindex>

</subtext>

 In the example, the operators indexof and subtext are used

together. indexof determines the position of the text XYZ in

the attribute value of the attribute AT_TEXT. Then, the

subtext operator identifies the substring from this position.

If the AT_TEXT attribute has the value ABCDEXYZAC, the

above calculation rule would return the value XYZAC.

PPM CUSTOMIZING

130

7.1.3.4.7 Time operators

The following operators are available: createday, createtimeofday, createtimestamp,

addtimespan, addfactorytimespan, and weekday

FORMAT CONVERSION (DATE)

XML tag: createday

Operands: exactly one value

Synopsis: <createday>
 <Value>
</createday>

Operands: TIME (TIMESTAMP, DATE)

Result: Value (date in dd.MM.yyyy format)

Result type: DAY

Description: Extracts a date from a PPM time stamp.

Calculation

(PPM3)

Result Date returned by the operand

Error If operand is of an invalid data type or equal

to NULL

Calculation

(PPM4)

Result Date returned by the operand NULL if

operand is equal to NULL

Error If operand is of an invalid data type

Example: <calcattr name="AT_DAY" type="PROCESS">
 <calculation>
 <createday>
 <filteredattribute name="AT_TIME"
 nodetype="OT_FUNC"
 objectname="this" filter="EARLY"/>
 </createday>
 </calculation>
</calcattr>

FORMAT CONVERSION (TIME)

XML tag: createtimeofday

Operands: exactly one value

Synopsis: <createtimeofday>
 <Value>
</createtimeofday>

PPM CUSTOMIZING

131

Operands: TIME (TIMESTAMP, DATE)

Result: Value (time of the day in hh:mm:ss format)

Result type: TIMEOFDAY

Description: Extracts the time of day from a PPM time stamp.

Calculation

(PPM3)

Result Time of the day defined by the operand

Error If operand is of an invalid data type or equal

to NULL

Calculation

(PPM4)

Result Time of the day defined by the operand

NULL if the operand returns NULL

Error If operand is of an invalid data type

Example: <calcattr name="AT_DAY" type="PROCESS">
 <calculation>
 <createtimeofday>
 <filteredattribute name="AT_TIME"
 nodetype="OT_FUNC"
 objectname="this" filter="EARLY"/>
 </createtimeofday>
 </calculation>
</calcattr>

FORMAT CONVERSION (TIME STAMP)

XML tag: createtimestamp

Operands: one or two values (Date or Date and time)

Synopsis: <createtimestamp>
 <Date>
 <Time> [optional]
</createtimestamp>

Operands: DAY, TIMEOFDAY

Result: Value (time stamp in dd.MM.yyyy hh:mm:ss format)

Result type: TIME (TIMESTAMP, DATE)

Description: Creates a PPM time stamp from a date or from a date

and a time.

Calculation

(PPM3)

Result Time stamp defined by the operands

Error If at least one operand is of an invalid data

type or equal to NULL

PPM CUSTOMIZING

132

Calculation

(PPM4)

Result Time stamp defined by the operands. NULL

if operand of DAY type returns NULL, or if

first operand of TIMEOFDAY data type and

second operand return NULL.

Error If at least one operand is of an invalid data

type

Example: <createtimestamp>
 <constant>
 <dataitem>
 <datatype name="DAY">
 25.01.2004
 </datatype>
 </dataitem>
 </constant>
</createtimestamp>

Creates the time stamp 25.01.2004 00:00:00.

ADDITION OF A TIME SPAN

XML tag: addtimespan

Operands: exactly two values (time stamp and time span, date

and time span or time and time span)

Synopsis: <addtimespan>
 <Time stamp or date or time>
 <Time span>
<addtimespan>

Operands: Operand 1: TIME (TIMESTAMP, DATE) or DAY or

TIMEOFDAY

Operand 2: TIMESPAN

Result: Value (time stamp in dd.MM.yyyy hh:mm:ss format)

Result type: Point in time: TIME (TIMESTAMP, DATE) or DAY or

TIMEOFDAY

Description: Adds a time span in the base scaling (SECOND) to a

PPM time stamp. The result is a time stamp.

Calculation

(PPM3)

Result Point in time resulting from adding the

specified time span (operand 2) to the

specified point in time (operand 1)

PPM CUSTOMIZING

133

Error If at least one operand equals NULL or at

least one operand is of an invalid data type

Calculation

(PPM4)

Result NULL if at least one operand is NULL Point

in time resulting from adding the specified

time span (operand 2) to the specified point

in time (operand 1)

Error If data type is invalid

Example: <calcattr name="AT_NTOFD" type="PROCESS">
 <calculation>
 <addtimespan>
 <constant>
 <dataitem>
 <datatype name="TIMEOFDAY">
 08:35:41
 </datatype>
 </dataitem>
 </constant>
 <constant>
 <dataitem>
 <datatype name="TIMESPAN">
 -30 MINUTE
 </datatype>
 </dataitem>
 </constant>
 </addtimespan>
 </calculation>
</calcattr>

At the specified time, a negative time span of thirty

minutes is added. The result value 08:05:41 is saved in

the AT_NTOFD target attribute.

ADDITION OF A TIME SPAN INCLUDING FACTORY CALENDAR

Adds a factory calendar time span to a PPM time stamp. The result is a time stamp.

Configuration and usage of the addfactorytimespan operator are similar as for

addtimespan. For this calculation, the specified factory calendar time span is added

beginning from a start time. By default, the operator supports only addition of positive factory

calendar time spans. If you also want to calculate points in time in the past, you can add

negative time spans by specifying the optional XML attribute negfactorytimespan="TRUE"

(default value: FALSE). If the point in time calculated is exactly on a work time limit the

operator returns the earliest point in time possible.

PPM CUSTOMIZING

134

Examples

Taking the simplified condition of a daily work time from 9am-5pm:

 addFactoryTimeSpan("01.12.2011 12:00:00", "8 FACTORY_HOUR") = "02.12.2011 12:00:00"

 addFactoryTimeSpan("01.12.2011 12:00:00", "5 FACTORY_HOUR") = "01.12.2011 17:00:00"

 addFactoryTimeSpan{negfactorytimespan="TRUE"}("02.12.2011 12:00:00", "-8

FACTORY_HOUR") = "01.12.2011 12:00:00"

 addFactoryTimeSpan{negfactorytimespan="TRUE"}("02.12.2011 12:00:00", "-3

FACTORY_HOUR") = "01.12.2011 05:00:00 PM"

If you want to use a factory calendar other than the default factory calendar

(factorycalendar.xml) you can specify an XML file containing the factory calendar to be

used. In the attributename XML attribute, you specify the function or process instance

attribute that determines the name of the XML factory calendar file to be used. The attribute

must be specified at the function or process instance for which the calculation is run. In the

XML attribute directory, you specify the directory in which to look for the specified factory

calendar file. The two XML attributes attributename and directory must always be specified

together.

You specify the corresponding directory containing the factory calendar file to be used

relative to the PPM data directory. The PPM data directory data_ppm is located under <PPM

installation directory>\ppm\server\bin\work\.

Example
...
<addfactorytimespan directory="calc\fc" attributename="AT_FC_NAME">
...

If the AT_FC_NAME attribute contains the value myFactoryCalendar.xml, the factory

calendar defined in the file myFactoryCalendar.xml is used for calculation. The file is located

under <PPM installation directory>\ppm\server\bin\work\data_ppm\calc\fc\.

The addition of factory calendar time spans is always in the base unit Person-second. The

conversion factors used for this are independent of the factory calendar and defined in the

client-specific configuration file transformationfactors.xml. If you do not want to use

these, you may use only factory calendar time spans with the units person-second, minute, or

hour to add a time span based on a factory calendar.

PPM CUSTOMIZING

135

DETERMINING THE DAY OF THE WEEK (FROM A DATE)

XML tag: weekday

Operands: exactly one value

Synopsis: <weekday>
 <Value>
</weekday>

Operands: Exactly one operand: TIME or DAY

Result: Character string in the format MO, TU, WE, TH, FR, SA,

or SU

Result type: TEXT

Description: Determines the day of the week from a PPM date type

and returns it as a character string.

Calculation

(PPM4)

Result One of the constants MO, TU, WE, TH, FR,

SA or SU, depending on the day of the week

of the date transferred.

Error If operand is of an invalid data type or an

invalid number of operands.

Example: <calcattr name="AT_WEEKDAY" type="PROCESS">
 <calculation>
 <weekday>
 <constant>
 <dataitem>
 <datatype name="DAY">
 25.08.2007
 </datatype>
 </dataitem>
 </constant>
 </weekday>
 </calculation>
</calcattr>

Determines the day of the week for the specified date

('Saturday') and returns it as the TEXT character string

SA.

Values of text dimensions that use results of the

weekday operator cannot be sorted.

PPM CUSTOMIZING

136

7.1.3.4.8 Conditional attribute type calculation

The conditional calculation of attribute types allows attribute type calculation to be

controlled. This control is based on the existence check for attribute types or the result of

comparisons. The existence check distinguishes between the two cases of Attribute type

exists (exists XML element) and Attribute type specified (filled XML element).

In the example below, the calculation element <if> returns the value Null, if there is no AT_B

function attribute in the process instance. In this case, the set of results generated by the

attribute XML element is empty.

If at least one AT_B attribute exists at any function in the process instance, the value of the

filteredattribute XML element is transferred.

<if>
 <exists>
 <attribute name="AT_B" nodetype="OT_FUNC"/>
 </exists>
 <then>
 <filteredattribute name="AT_C" nodetype="OT_FUNC"
 filter="EARLY"/>
 </then>
</if>

By linking conditions using logical operators, more complex conditions can also be

formulated. The example shown is to be expanded to include a test for an existing attribute

value.

<if>
 <and>
 <exists>
 <attribute name="AT_B" nodetype="OT_FUNC"/>
 </exists>
 <filled>
 <attribute name="AT_B" nodetype="OT_FUNC"/>
 </filled>
 </and>
 <then>
 <filteredattribute name="AT_C" nodetype="OT_FUNC"
 filter="EARLY"/>
 </then>
</if>

As the existence of the corresponding attribute type is a prerequisite for an existing attribute

value, the check for existence can be skipped to optimize the condition.

In the following example, the <if> calculation element returns the value NULL if an attribute

type with the name AT_G is not specified for any of the occurring functions.

<if>
 <exists>
 <filteredattribute name="AT_G" nodetype="OT_FUNC"

PPM CUSTOMIZING

137

 filter="LATEST"/>
 </exists>
</if>

7.1.3.5 Nesting of operators

Operators can be nested at any depth. If you are combining operators, you need to adhere to

the rules specified in the DTD.

Warning

Calculation rules based on nesting of operators that is not permitted result in the import being

canceled when the measure configuration is imported. Due to the complex dependencies,

incorrect calculation rules may result in the database content being entirely unusable.

In the file KeyindicatorConfiguration.dtd in the dtd directory of your PPM installation, you

can check what nesting of operators is permitted.

Example (extract from DTD):

<!ELEMENT abs (%numericoperator; | %setoperator; |
 %caseoperator; | filteredattribute | constant)>

The <abs> operator can be nested with one of the <filteredattribute> or <constant> XML

elements or with an operator for the specified entities (declared units in XML notation to

which particular XML elements are assigned):

 % numericoperator (unit of all mathematical operators)

 % setoperator (unit of all operators producing a value)

 % caseoperator (unit of all condition operators)

Which operators are assigned to which entity can be seen in the declaration of the entity.

Example (extract from DTD):

<!ENTITY % setoperator "sum|product|card|min|max|mean">

The % setoperator entity stands for one of the operators <sum>, <product>, <card>, <min>,

<max>, or <mean>.

The following example shows a calculation rule compliant to the DTD:

<calcattr name="..." type="...">
 <calculation>
 <abs>
 <minus>
 <filteredattribute name="AT_KI_BSP1"
 nodetype="OT_FUNC" objectname="this"
 filter="LATEST" onerror="EXIT_NO_WARNING"/>
 <filteredattribute name="AT_KI_BSP2"
 nodetype="OT_FUNC" objectname="this"
 filter="EARLY" onerror="EXIT_NO_WARNING"/>

PPM CUSTOMIZING

138

 </minus>
 </abs>
 </calculation>
</calcattr>

7.1.3.6 Calculation functions

Define complex partial calculations for calculation rules that you want to use in several

attribute calculations to be used as calculation functions. A calculation function is used by

calling up usefunction in the calculation rule for an attribute calculation or calculation

function.

Warning

When calling up calculation functions from other calculation functions, avoid cyclic

dependencies. The import of this kind of measure configuration is canceled and an error

message is output.

XML tag Description

function name Internal name of the calculation function.

Referenced in the function call.

Resulttype Result type (for use with other operators). Valid

values:

Value (VALUE)

Set of values (VALUELIST)

Logical value (BOOLEAN)

Datatype Data type of calculation result

Usefunction Function call

When defining and calling up a calculation function, the result type (resulttype) and data

type (datatype) must also be specified.

Example

The following example shows the definition of the getPrincipal calculation function, which

returns a value with the TEXT data type as the result.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">

PPM CUSTOMIZING

139

<keyindicatorconfig>
 ...
 <function name="getPrincipal" resulttype="VALUE"
 datatype="TEXT">
 <if>
 <exists>
 <attribute name="AT_PRINCIPAL_NAME"
 nodetype="PROCESS"/>
 </exists>
 <then>
 <max>
 <attribute name="AT_PRINCIPAL_NAME"
 nodetype="PROCESS"/>
 </max>
 </then>
 <else>
 <max>
 <attribute name="AT_PRINCIPAL_ID"
 nodetype="PROCESS"/>
 </max>
 </else>
 </if>
 </function>
 ...
</keyindicatorconfig>

Call up the calculation function

The getPrincipal calculation function previously defined is called up in the calculation rule for

the AT_EXP attribute with usefunction. The result type for the calculation function must

match the processing operator. In the example the syntactically correct result type VALUE is

combined with the eq operator that processes values.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
 ...
 <calcattr name="AT_EXP" type="PROCESS">
 <calculation>
 <if>
 <eq>
 <usefunction name="getPrincipal"
 resulttype="VALUE" datatype="TEXT"/>
 <constant>
 <dataitem>
 KTD
 <datatype name="TEXT">Text</datatype>
 </dataitem>
 </constant>
 </eq>
 <then>
 ...

PPM CUSTOMIZING

140

 </then>
 ...
 </if>
 </calculation>
 </calcattr>
 ...
</keyindicatorconfig>

Create calculation functions using PPM Customizing Toolkit. In the Calculated attributes

menu for the Measures and dimensions module, call up the dialog box for creating, editing

and deleting calculation functions using the Configure calculation functions button. If

calculation functions are specified in the system, they are available in the Define calculation

rule dialog box both for the definition of additional calculation functions and for the definition

of attribute calculations.

7.1.3.7 Change the attribute type

Mathematical calculations are executed internally using the DOUBLE data type. The

arithmetic link between any numerical data types is correctly calculated and then converted

into the data type for the resulting attribute type.

The link between a time span attribute type and a cost attribute type is also executed

correctly from a numerical point of view. The base unit of the result attribute type determines

the result unit.

7.1.3.8 Summary

A new attribute type calculated using calcattr contains the result value in the base unit.

A specified calculation rule is only executed if the specified attribute type is given as an

attribute to be calculated (calculated=TRUE) in the definition of a measure or dimension

(attrname XML attribute).

If PROCESS is specified as the node type (nodetype), the specified attribute type is

calculated only once and copied to the process instance.

If a calculation rule OT_FUNC is specified as the node type, the specified attribute type is

calculated for every function in the process instance. It is also copied to every function.

Within a calculation rule (calculation), reference can be made to any existing attribute types.

If this calculation is intended to access an attribute type for the function for which this

calculation is currently being executed, this is used as the object name.

PPM CUSTOMIZING

141

7.1.3.9 Example attribute calculations

Example 1: Delivery performance

The delivery performance measure compares the actual delivery date (end time of the

SAP.WAUS function in a process instance) with a default value imported from the source

system. If the actual delivery date is before the default value, the measure value is 0. The

value 0 is interpreted as on-time delivery. Otherwise, the measure shows the deviation from

the standard value. The default value is stored in the AT_CUSTDATE_WISH process instance

attribute. Where the SAP.WAUS function occurs several times in the process instance, the

earliest value is determined.

...
<!-Delivery performance -->
<calcattr name="AT_KI_WLFTREU" type="PROCESS">
 <calculation>
 <max>
 <set>
 <constant>
 <dataitem value="0 SECOND">
 <datatype name="TIMESPAN"/>
 </dataitem>
 </constant>
 <timespan>
 <max>
 <attribute name="AT_CUSTDATE_WISH"
 nodetype="PROCESS"/>
 </max>
 <min>
 <attribute name="AT_END_TIME"
 nodetype="OT_FUNC" objectname="SAP.WAUS"/>
 </min>
 </timespan>
 </set>
 </max>
 </calculation>
</calcattr>
...

The measure is given the maximum (max) of a set of values (set) as its value. The set of

values contains the element 0 (constant) and the time difference between the actual

delivery date and the target delivery date (timespan). As the attribute XML element creates

a set of values, appropriate operators must first of all be used to determine an attribute value

for further calculation. When determining the attribute value for the SAP.WAUS function,

using the min operator also determines the earliest actual delivery date. The set of values

created using set is given 2 elements: {0, (Desired date - Delivery date)}. When determining

the maximum of the set of values, a negative time span results in 0 being returned while a

positive time span returns the difference between the end time of the SAP.AUS function and

PPM CUSTOMIZING

142

the AT_CUSTDATE_WISH process attribute in seconds (base unit for the timespan data

type).

As this new attribute is a process instance attribute, it is calculated only once for each

process instance. The following results of the calculation can occur:

The new process instance attribute is given the calculated positive time span in the unit

Seconds. If the calculated time span is negative, the new process instance attribute is given

the time span 0 seconds.

The new process instance attribute is not written at the process instance if the calculation

fails for one or more of the following reasons and no default value is specified:

 The AT_CUSTDATE_WISH attribute does not exist at the process instance.

 There is no SAP.WAUS function at the process instance.

 The AT_END_TIME attribute does not exist at the SAP.WAUS function.

Example 2

At each function of a process instance, the AT_KI_COMPETENCE attribute should specify

whether the values of the AT_COMPETENCE and AT_CREDIT_AMOUNT attributes for a

function match. If they match, the attribute should have the value 1, otherwise the value

should be 0.

<calcattr name="AT_KI_COMPETENCE" type="OT_FUNC">
 <calculation>
 <if>
 <eq>
 <min>
 <attribute name="AT_COMPETENCE"
 nodetype="OT_FUNC" objectname="this"/>
 </min>
 <max>
 <attribute name="AT_CREDIT_AMOUNT"
 nodetype="OT_FUNC" objectname="this"/>
 </max>
 </eq>
 <then>
 <constant>
 <dataitem value="1">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 </then>
 <else>
 <constant>
 <dataitem value="0">
 <datatype name="DOUBLE"/>
 </dataitem>
 </constant>
 </else>

PPM CUSTOMIZING

143

 </if>
 </calculation>
</calcattr>

Specifying the OT_FUNC node type and the lack of an object name leads to the calculated

AT_KI_COMPETENCE attribute being written to all functions in the process instance. In the

attribute calculation, specifying this as the object name results in every function accessing

its own attributes. In this case, the embracing operators min and max return the value of the

referenced attribute, as the object name this results in an attribute set containing only one

element.

Example 3

By default, the earliest start time of a function in the process instance is used as the start

time for a process instance:

<calcattr name="AT_START_TIME" type="PROCESS">
 <calculation>
 <min>
 <attribute name="AT_START_TIME" nodetype="OT_FUNC"/>
 </min>
 </calculation>
</calcattr>

If only the start times of particular functions are to be used, these functions must be checked

for a particular criterion. In the following example, the auxiliary AT_TEMP_TIME attribute is

used to filter the "Rush order type" criterion (AT_AUFTRAGSART function attribute value).

The actual start time for the process instance is then determined from the filtered start times

of the functions.

<calcattr name="AT_TEMP_TIME" type="OT_FUNC">
 <calculation>
 <if>
 <eq>
 <filteredattribute name="AT_AUFTRAGSART" nodetype=
 "OT_FUNC" objectname="this" filter="EARLY"/>
 <constant>
 <dataitem>
 Rush order
 <datatype name="TEXT"/>
 </dataitem>
 </constant>
 </eq>
 <then>
 <filteredattribute name="AT_START_TIME" nodetype=
 "OT_FUNC" objectname="this" filter="EARLY"/>
 </then>
 </if>
 </calculation>
</calcattr>

PPM CUSTOMIZING

144

<calcattr name="AT_START_TIME" type="PROCESS">
 <depends attrname="AT_TEMP_TIME" nodetype="OT_FUNC">
 <calculation>
 <min>
 <attribute name="AT_TEMP_TIME" nodetype="OT_FUNC"/>
 </min>
 </calculation>
</calcattr>

Example 4

The order group is to be saved as a function attribute in the AT_KI_AUFTR_GRUPPE

attribute. The order group is given by the first two characters in the order number

(AT_AUFTNR). For example, the order group 40 belongs to the order number 40268755.

The subtext operator extracts the string 40 from the string 40268755 for the AT_AUFTNR

function attribute:

<calcattr name="AT_KI_AUFTR_GRUPPE" type="OT_FUNC">
 <calculation>
 <subtext beginindex="0" endindex="2">
 <filteredattribute name="AT_AUFTNR" nodetype=
 "OT_FUNC" objectname="this" filter="EARLY"/>
 </subtext>
 </calculation>
</calcattr>

XML attribute Description

beginindex Start index (inclusive, starting at 0)

endindex

(optional)

end index (exclusive)

If no end index is specified, the result string begins at the specified start index and ends at

the end of the source string.

Warning

The subtext operator can only be used on attributes and constants of the TEXT data type. If

you use it on a string that contains fewer characters than the number specified in

beginindex or endindex, the operator returns the value NULL.

Example 5

The date 07.04.2003 is extracted from the time stamp 07.04.2003 17:30:58 and is written

to all functions in the process instance as the value of the AT_CALEN_DAY attribute.

<calcattr name="AT_CALEN_DAY" type="OT_FUNC">
 <calculation>
 <createday>
 <constant>
 <dataitem value="07.04.2003 17:30:58">

PPM CUSTOMIZING

145

 <datatype name="TIME"/>
 </dataitem>
 </constant>
 </createday>
 </calculation>
</calcattr>

Example 6

A time span of one hour (3600 seconds in the base unit) is added to the time stamp

22.01.2002 14:55:21 and copied to all functions in the process instance as the time stamp

value 22.01.2002 15:55:21 for the AT_ADD_TSP attribute.

<calcattr name="AT_ADD_TSP" type="OT_FUNC">
 <calculation>
 <addtimespan>
 <!-- Time stamp -->
 <constant>
 <dataitem value="22.01.2002 14:55:21">
 <datatype name="TIME"/>
 </dataitem>
 </constant>
 <!— Time span 3600 seconds -->
 <constant>
 <dataitem value="3600">
 <datatype name="TIMESPAN"/>
 </dataitem>
 </constant>
 </addtimespan>
 </calculation>
</calcattr>

7.1.3.10 Special features of attribute calculation

7.1.3.10.1 AT_INTERNAL_NO_CUBE_ENTRY function
attribute

For certain functions, you can specify that they are not to be saved in the function cube. If

the attribute AT_INTERNAL_NO_CUBE_ENTRY exists at a function and has the value true

this function instance will not be written to the cube table. The existence of this attribute

does not impact the measure calculation of this function, that is, you can create the attribute

at the function instance using a calculation rule, as well.

The attribute is evaluated by instance, that is, if the attribute is missing at individual function

instances (or if the attribute value is not equal to true), these function instances will be saved

in the function cube. However, if you overwrite these function instances having the attribute

PPM CUSTOMIZING

146

AT_INTERNAL_NO_CUBE_ENTRY and the value true when reimporting, the entries in the

function cube will be deleted, as well.

ATTRIBUTE DEFINITION

The attribute AT_INTERNAL_NO_CUBE_ENTRY is not included in the default configuration

of PPM attributes. If you want to use this feature, you first need to define the attribute

AT_INTERNAL_NO_CUBE_ENTRY with the boolean data type.

The functions displayed in the analysis process tree are based on entries in the function cube.

Functions whose instances were not written to the function cube due to the attribute value

true for the attribute AT_INTERNAL_NO_CUBE_ENTRY are not displayed in the process

tree.

The feature described does not affect the use of process hierarchies because you can assign

process instances to functions that were not calculated. The functions not saved in the

function cube are not displayed in the process tree of the assigned process type, either.

7.1.4 Typification rules in CTK

You can define typification rules in the Processes PPM CTK module. To create, edit or delete

a rule for a particular process type, simply select the corresponding process type from the

process tree and select the relevant item from the pop-up menu. It is also possible to create a

typification rule based on a template. All rules previously defined can be used as a template.

The definition of the calculation rule for a typification rule is specified using the familiar

operands and operators from the attribute calculation (see Definition of attribute

calculations (page 51)).

Warning

When defining the corresponding calculation rule for a typification rule, you need to ensure

that it delivers a return value of the BOOLEAN type.

Each calculation rule is automatically checked for correct syntax in the Configure

typification rule "typifierrule_<processtypegroup>_<processtype>" dialog.

As soon as you save your changes, they are permanently stored in the process tree and

measure configurations. When you activate the changed configuration, it is transferred to the

PPM system.

PPM CUSTOMIZING

147

7.2 Typification by attribute calculation

The typification can be done by using typification rules, or alternatively, by importing values

in specific attributes, the so-called "pretypification".

The attributes can always be calculated separately from typification and process assignment.

You can do that by assigning the attributes to the process tree root. This attribute calculation

done by runppmimport is processed between merge and typification/measure calculation.

In this way, an EPC typification can be applied by importing or calculating the attributes

AT_PROCTYPEGROUP and AT_PROCTYPE. If these are set typification will use their values

instead of using the typification rules as described above.

Attributes AT_PROCTYPE and AT_PROCTYPEGROUP:

Attribute Description Usuage

AT_PROCTYPE process type Imported or set by typification

rules

AT_PROCTYPEGROUP process type group Imported or set by typification

rules

PPM CUSTOMIZING

148

8 Definition of measures, dimensions, attribute
calculations, and relations

Measures in the PPM system supply measurable values of process or function instance

properties that can be calculated, such as function cycle time in hours or order volume in

euros.

Dimensions further specify the calculated measure values of process and function instances

using particular criteria, such as order number, sold-to party, etc.

The following chapters describe how you define measures and dimensions or attribute

calculations and relations and make them available to the PPM system through special

configurations of the process tree (see chapter Register measures and dimensions at the

PPM system (page 218)).

8.1 Terminology

Key terms of the chapter on Definition of measures, dimensions, attribute calculations,

and relations are explained in detail below.

8.1.1 Measures

The PPM system differentiates between various measure categories:

DIFFERENTIATION BY MEASURE TYPE

The following measure types are differentiated by the object type that the measure refers to:

 Process measures are measures whose values are available for analysis at the entire

process instance.

 Function measures are evaluated based on function instances.

 Relation measures are measures that are available for the evaluation of relations.

 Cardinality measures are available for specific text dimension evaluations.

DIFFERENTIATION BY PROCESS REFERENCE

 Process instance-dependent measures are measures whose values are calculated with

a reference to process instances.

 Process instance-independent measures are measures whose values are calculated

without a reference to process instances.

PPM CUSTOMIZING

149

DIFFERENTIATION BY DEFINITION

 Standard measures are defined in the client-specific measure configuration file. A major

part of these measures is preconfigured in PPM.

 User-defined measures are defined by users in a particular module of the PPM user

interface based on standard measures and then saved in a special XML configuration file.

Preconfigured user-defined measures are also part of the ARIS Process Performance

Manager scope of supply.

The listed measure categories can be combined, for example, you can define process

instance-independent process measures.

All measure categories have in common that the concrete value of a measure describes a

particular, measurable property of a process instance, for example, like time of execution or

number of processors.

Furthermore, measures can be grouped logically. The assignment of a measure to a group

must be unique. This means that each measure can only be assigned to one group. The group

structure is hierarchical and can be of any depth.

8.1.1.1 Process instance-dependent measures

STANDARD MEASURES

The values of standard measures are calculated based on attributes at the process, function,

or relation instance level using the attribute calculator component of the Measure calculator.

The calculation uses either a fixed algorithm programmed in the PPM software or an algorithm

specified by the user in the XML Measure configuration file.

USER-DEFINED MEASURES

The algorithm for calculating user-defined measures can be conveniently created using the

PPM front-end.

The fundamental difference from standard measures is the fact that the calculation is not

instance-specific and based on attributes, but on the sets of values for already calculated

measures. The results are not saved in the PPM database and are recalculated each time the

measure is called up. Changes to the algorithm are displayed immediately by calling up the

measure again in the PPM user interface.

PPM CUSTOMIZING

150

8.1.1.2 Process instance-independent measures (PIKIs)

The values of process instance-independent measures are calculated based on data that is

not process-oriented. Process instance-independent measures can be analyzed in the PPM

system just like process instance-dependent process measures and be used in calculation

rules of user-defined measures, for example.

Process instance-independent measures are not calculated from process instance data. The

concrete measure value does not have any process instance reference.

To find out how process instance -independent measures are defined, please refer to

chapter Definition of process instance-independent measures (page 160).

The configuration of the file import formats (XML, CSV, XLS) of process instance-independent

measures is described in the technical reference PPM Data Import.

8.1.2 Dimensions

Dimensions are criteria for differentiating process instances and function instances.

Dimension values are based on attribute values, which are either transferred directly from the

source system (for example, location, product area) or calculated (for example, process

type).

The following dimension types exist:

 Text dimensions (page 181) (one-level, two-level, n-level)

 Floating point dimensions (page 194) (floating point number format)

 Time dimension (page 195)

 Time of day dimension (page 203)

 Time range dimension (page 200)

 Search dimensions (page 205)

 Shared function dimension (page 209)

The standard step size for displaying a dimension is either explicitly specified in the

configuration file or is calculated automatically by the system for optimum representation.

8.2 Definition of measures

The starting point for the calculation of measures and dimensions is the process tree. When

calculating, for all the measures specified in the process tree configuration file (useki XML

element), the definition in the measure configuration (kidef XML element) is retrieved and the

PPM CUSTOMIZING

151

associated calculation rule (calcattr XML element) is executed. This procedure only

calculates measures that are used in the process tree, and optimizes the performance of the

Measure calculator independently of the number of defined measures. Dimensions are

calculated in the same way (usedim XML tag).

The graphic below illustrates the dependencies between the measure definition and the

process tree definition:

The measure configurations supplied with the PPM system (*_keyindicator.xml files in the

directories <PPM installation

directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-clie

nt-run-prod-<version>-runnable.zip\ppm\ctk\ctk\examples\custom\<client

template>\xml contain definitions of the most common, generally applicable measures and

dimensions. This default configuration can easily be expanded in the PPM Customizing Toolkit

module Measures and dimensions to include project-specific measures.

Warning

Avoid using the suffixes _NUM and _SUM when assigning internal measure names. These

suffixes are used internally by the Measure calculator.

PPM CUSTOMIZING

152

8.2.1 Definition of standard measures

A measure is defined in the client-specific XML configuration file with the

KeyindicatorConfiguration.dtd document type definition by the following element:

...
<kidef name="..." attrname="..." type="..."
 calculated="..." distribution="..."
 standarddeviation="..." retrievertype="..."
 kigroup="..." sharedfunctionki="..."
 functionspanki="..." colname="..."
 importmode="OPTIONAL">
 <description language="..." name="...">
 Description text...
 </description>
</kidef>
...

XML attribute Description

name Internal name of the measure. Referenced in the

useki XML tag in the process tree definition.

type Measure type

PROCESS: Process measure

FUNCTION (obsolete): Function measure

OT_FUNC: Function measure

OT_ORG: Organizational measure

RELATION: Relation measure

location

(optional)

Only for type="RELATION"

Valid values: SOURCE (attribute placement on

source reference object of relation)

TARGET (attribute placement on target

reference object of relation)

THIS (default value: attribute is placed at the

relation itself)

description Language-specific description of a group,

optionally with tooltip (#PCDATA section in the

description element). The description must be

specified in at least the default language.

PPM CUSTOMIZING

153

XML attribute Description

attrname Name of the attribute on which the measure is

based. This can be an existing attribute value

(calculated=FALSE) or an attribute value to be

calculated (calculated=TRUE).

calculated TRUE: The value of the referenced attribute is

calculated using the calculation rule specified

by calcattr.

FALSE: The value of the referenced attribute is

not calculated.

distribution TRUE: The measure can be used as a dimension.

FALSE: The measure cannot be used as a

dimension.

standarddeviation

(optional)

TRUE: The standard deviation can be calculated

for the measure. The standard deviation can be

calculated for all measures except Number of

processes and Number of functions.

The default value is TRUE.

sharedfunctionki

(optional)

TRUE: The measure is treated as a shared

function measure for calculating measures. The

measure for a shared function is only calculated

once and applies to all instances of the shared

function.

Default value is FALSE.

functionspanki

(optional)

TRUE: The measure is a function span measure

(for example, cycle span).

If the function occurs multiple times within a

process instance, the measure value calculated

applies only once per instance.

Default value is FALSE.

PPM CUSTOMIZING

154

XML attribute Description

retrievertype

(optional)

Type of measure retriever used. Defines how the

set of measure values for the process instances

involved in a particular analysis is aggregated.

Default value: KEYINDICATOR.

KEYINDICATOR:

Calculates the average value (for example, cycle

time). Numerical types except LONG are all

permitted as data types.

NUM_KEYINDICATOR:

Aggregates numerical measures (for

example, number of processes, number of

functions) by adding the values. All numerical

data types are valid.

FREQ_KEYINDICATOR:

Aggregates frequencies (for example, process

frequency, function frequency). The values are

added and then divided by the time span

resulting from the selected step width of the

dimension and the set time filter.

FACTORY_KEYINDICATOR:

Aggregates measures by calculating the

average using the factory calendar.

FACTORY_TIMESPAN is the only permissible

data type.

dimreferring Type of dimension reference

LOOSE: Loose

STRICT: Strict

Default value: LOOSE

kigroup

(optional)

Measure group

importmode

(optional)

Output of error messages when calculating

measure values.

OPTIONAL: Calculation errors are not output.

MANDATORY: Calculation errors are output

Default value: OPTIONAL

PPM CUSTOMIZING

155

Only one of the sharedfunctionki and functionspanki attributes may have the value TRUE.

If one of the two attributes has the value TRUE, the type measure type must have the value

FUNCTION (function measure).

The FACTORY_KEYINDICATOR measure retriever type is no longer used from PPM 3.x, but is

still supported for compatibility reasons. When the configuration is imported, it is replaced by

the KEYINDICATOR retriever type.

8.2.1.1 Formatting measure values

Measure values are rounded to three decimal places by default and are displayed with a

thousands separator or in accordance with the specifications pertaining to the

MINIMUM_FRACTION_DIGITS and MAXIMUM_FRACTION_DIGITS keys in the file

Keyindicator_settings.properties. Alternatively, you can use the format XML element to

specify different formats for each individual measure, provided that it is not a goal

accomplishment indicator.

Goal accomplishment indicator values are always rounded to one decimal place and one

significant place.

Example
...
<kidef name="PDLZ" attrname="..." type="..."
 calculated="..." distribution="..."
 standarddeviation="..." retrievertype="...">
 <description name="Process cycle time" language="de"/>
 <format fractiondigits="1" significantdigits="1" />
</kidef>
...

In the analysis in PPM, the values of the Process cycle time measure are rounded to one

decimal place (fractiondigits="1") when displayed. One significant figure

(significantdigits="1") is to be displayed for the relevant measure value in tooltips and model

attributes for the EPC view.

The definition of the format specifications is located in the file _formatinfo.dtd.

XML tag Description

format Format specifications for measure values

fractiondigits

(optional)

Number of decimal places to be displayed for

measure values in tables, on EPC object

connections, and in filter dialogs.

Default value: 3

PPM CUSTOMIZING

156

XML tag Description

significantdigits

(optional)

Only applies to measure values in tooltips and

model attributes for the EPC view:

Number of significant figures to be displayed

(before and after the decimal point and not

equal to 0) up to a maximum of ten decimal

places in total. For example, if you specify

significantdigits="6" the value

1453.03500125 will be displayed as 1453.035

regardless of the specification for

fractiondigits.

usegrouping

(optional)

TRUE: Thousands separators are displayed.

FALSE: Thousands separators are not displayed.

Default value: TRUE

8.2.1.2 Definition of process cost measures

The process costs of a process instance are given by the total process costs of all function

instances within the process instance. The process costs of function instances are calculated

using the cost rates for the organizational units assigned to the functions (see Anonymizing

(page 45) chapter) and the execution times of the functions. The number of executions of a

function by an organizational unit is given by the AT_COUNT_PROCESSINGS attribute for

the connection between the organizational unit and the function. If several organizational

units are assigned to a function, this is assessed as repeated execution of the function.

To calculate cost measures, the Costs and Cost rate data types must be known. The

definition of these data types is included in the XML configuration file *_datatypes.xml of

the corresponding PPM CTK client template (under <PPM installation

directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-run

-prod-<version>-runnable.zip\ppm\ctk\ctk\examples\custom\), which you can adjust to

meet your project requirements.

The execution times of functions required to calculate cost measures can be calculated in

two different ways. Depending on the selected calculation method, the calculated costs will

be saved as different measures. The calculation method used for the execution times

depends on which information is extracted from the source system.

PPM CUSTOMIZING

157

MEASURES FPKS_R AND PK_R

To calculate the cost rate based on the processing time, you use the processing time

(AT_KI_FBZ function attribute) calculated from the AT_START_TIME and AT_END_TIME

attributes for a function. The calculated cost rate is saved in the AT_PKS_R function

attribute.

MEASURES FPKS_S AND PK_S

To calculate the cost rate based on the performance standard, an estimated standard

processing time is extracted from the source system and written to the functions as the

AT_LS attribute. The calculated cost rate is saved in the AT_PKS_S function attribute.

The process cost rate for a function specifies the average costs for processing the function

once and is calculated using the following calculation rule for the two calculation methods

described: The product of the execution time of a function and the sum of the weighted cost

rates of all organizational units assigned to the function is divided by the total number of

executions.

The following formula illustrates the calculation rule:

FPKS Process cost rate (function)

FT Function execution time

KS Process cost rate

FREQ Processing frequency

The method of calculating cost measures is selected by registering the corresponding

measures in the process tree. The default configuration of PPM calculates process cost rates

based on the performance standard.

Extract from the file *_processtree.xml:

...
<useki name="FPKS_S" scale="EUR" assessment="NEG"/>
<useki name="PK_S" scale="EUR" assessment="NEG"/>
...

8.2.2 Measure definition in multi-byte character sets

The following extract from the measure configuration file shows an example of the definition

options for user-defined measures when using a multi-byte character set:

PPM CUSTOMIZING

158

Example with tooltip and attribute calculation:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
...
<calcattr name="ΙΔ_ΟΓΚ_ΕΝΤ" type="PROCESS">
 <calculation>
 ...
 </calculation>
</calcattr>
...
 <!-- Ορισμός του δείκτη όκγου των εντολών -->
 <kidef name="ORDERVOL" attrname="ΙΔ_ΟΓΚ_ΕΝΤ"
 type="PROCESS" calculated="FALSE"
 distribution="FALSE" standarddeviation="FALSE"
 retrievertype="NUM_KEYINDICATOR"
 kigroup="KI_GROUP_COST" dimreferring="LOOSE"
 importmode="OPTIONAL" sharedfunctionki="FALSE"
 functionspanki="FALSE">
 <description name="Auftragsvolumen" language="de"/>
 Order volume
 <description name="Order volume" language="en">
 Order volume
 <description name="Όγκος εντολών" language="el">
 Όγκος εντολών κατα αύξοντα αριθμό
 </description>
 </kidef>
 ...
</keyindicatorconfig>

8.2.3 Definition of cardinality measures

The value of a cardinality measure is based on the number of different values (= max. possible

steps) of the referenced text dimension for the specified step width (level). A cardinality

measure can be defined for one-level, two-level, and n-level dimensions, and is defined by

the following XML element in the measure configuration file:

...
<crdkidef name="..." dimreferring="...">
 <description language="de" name="..."/>
 <description language="en" name="..."/>
 <refdim name="..." refinement="..."/>
</crdkidef>
...

XML tag Description

name Internal name of the measure. Referenced in the

useki XML tag in the process tree definition.

PPM CUSTOMIZING

159

XML tag Description

dimreferring Type of dimension reference.

LOOSE: Loose

STRICT: Strict

Default value: LOOSE

refdim The name XML attribute specifies the name of the

dimension to which the calculated cardinality

relates.

You also have the option of specifying the step width

of the dimension for which the cardinality is

calculated in the refinement XML attribute. If

nothing is specified here, the default step width of

the dimension is used. It is mandatory to specify the

step width for n-level dimensions. Valid values:

One-level dimension:

BY_LEVEL_1

Two-level dimension:

BY_LEVEL_1 (rough) or BY_LEVEL_2 (detailed)

N-level dimension:

Only

BY_LEVEL<1_N> (roughest level, for

example, BY_LEVEL1_12) or

BY_LEVEL<N_N> (most detailed level, for

example, BY_LEVEL12_12)

The default value is the default step width for the

referenced dimension.

kigroup

(optional)

Measure group

Default value: All measures group

As well as the measure itself, only the ranking, previous periods, and planned values can be

determined for cardinality measures. Statistical evaluations (minimum, maximum, total and

standard deviation) cannot be displayed. Cardinality measures cannot be used as a

dimension. No filters can be specified for cardinality measures.

Any additional dimension values resulting from import of process instance-independent

measures will not be included in the calculation of cardinality measures. The cardinality of

dimensions that are used exclusively by process instance-independent measures always

return the value 0.

PPM CUSTOMIZING

160

8.2.4 Definition of process instance-independent measures

Process instance-independent measures are defined in the client-specific measure

configuration (XML file with the document type definition keyindicatorconfiguration.dtd) in

the general context of data series.

DEFINITION OF DATA SERIES

A data series (pikicube XML element) consists of process instance-independent measures

and referenced dimensions. It must contain at least one process instance-independent

measure (pikidef) and at least one referenced dimension (refdim). Referenced dimensions

must be dimensions configured in the PPM system.

Process instance-independent measures in data series are always of the Process type in

order to ensure maximum usability in the PPM system. Therefore, the type of the data series

itself is not important, see chapter Usage (type) of a data series (page 166).

For each data series, at least one referenced dimension must be marked as a key dimension

(refdim ... iskeydimension="TRUE"). By default, all referenced dimensions are key

dimensions. A particular value combination of the specified key dimension(s) supplies a

unique data row within a data series, that is, a particular value combination exists only once

within a data series.

Example

The following data series contains three data rows that differ by the value combinations of

the specified key dimensions (*):

D_COUNTRY* D_PLANT* D_DEPARTMENT

*

D_RECORDED

BY

SALES COSTS

Germany Hamburg 42 Smith 400000

Germany Frankfurt 17 Hartmann 510000 360000

USA Pittsburgh 53 Fox 410000

Each of the three data rows can occur only once within the data series. The specific value

combination of the key dimensions D_COUNTRY, D_PLANT, and D_DEPARTMENT (for

example, Germany; Hamburg; 42) represents the identifier of a data row.

CONFIGURATION

The following general file structure illustrates the configuration of a data series (pikicube

XML element):

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM

PPM CUSTOMIZING

161

 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
 ...
 <pikicube name="...">
 <description language="de" name="..."/>
 ...
 <pikidef name="..." retrievertype="..."
 dimreferring="...">
 <description language="de" name="...">
 Descriptive text (tooltip)
 </description>
 ...
 <datatype name="..."/>
 </pikidef>
 <refdim name="..." refinement="..."
 iskeydimension="TRUE"/>
 ...
 </pikicube>
 ...
</keyindicatorconfig>

The following tables explain the configuration of a process instance-independent data series:

ELEMENT and
ATTLIST pikicube

Description

pikicube Process instance-independent data series

name Data series name unique in the system. It is also

used as the name of the cube in the database.

comment

(optional)

Comment on the data series; used in PPM

Customizing Toolkit.

editable editable="TRUE" (default value) enables data

input for the data series in the

Configuration/Data input module of the PPM

interface.

type Usage (type of data series) that determines which

dimensions may be used in the data series as

referenced dimensions. The default value is

PROCESS, that is, only process dimensions

(dimtype="PROCESS" in the dimension definition)

may be specified in the data series.

Other valid values:

OT_FUNC (only function dimensions allowed in the

data series)

PPM CUSTOMIZING

162

ELEMENT and
ATTLIST pikicube

Description

RELATION (only dimension of the RELATION type

allowed in the data series)

For more information, please refer to chapter

Usage (type) of a data series (page 166).

relname Only for type="RELATION". A single relation

existing in the PPM system is to be specified with

its name, for

example, relname="REL_WORKS_TOGETHER".

The data series is assigned to the specified

relation.

deletedata

onredefinition

Obsolete,

no longer used.

description Language-specific description of the data series.

The description must be specified in at least the

default language.

pikidef Definition of a process instance-independent

measure, at least one for each data series, see

below.

refki Obsolete, no longer used.

refdim Referenced dimension, see below

ELEMENT and
ATTLIST refdim

Description

refdim A dimension existing in the PPM system, to which

the process instance-independent measures of the

data series refer. You must specify at least one

referenced dimension for each data series.

For process instance-independent measures

internal dimensions (page 187) are not supported

as referenced dimensions (refdim).

name Internal name of the dimension existing in the PPM

system.

PPM CUSTOMIZING

163

ELEMENT and
ATTLIST refdim

Description

refinement Dimension step width that data import is to be

performed with.

The dimension values to be imported must be

specified in this step width exactly.

iskeydimension iskeydimension="TRUE" (default value) specifies

that the referenced dimension is a key dimension

of the data series. The value combinations of all

specified key dimensions render each data row of a

data series unique.

ELEMENT and
ATTLIST pikidef

Description

pikidef Definition of a process instance-independent

measure. You must specify at least one definition

for each data series.

A process instance-independent measure can be

used in a single data series.

name Name of the process instance-independent

measure that is unique in the system.

type Obsolete, no longer used.

retrievertype Measure retriever type. Default value:

KEYINDICATOR (averaging)

Further values:

NUM_KEYINDICATOR (summation)

FREQ_KEYINDICATOR (obsolete, is no longer

used)

FACTORY_KEYINDICATOR (is no longer used)

dimreferring Type of dimension reference

LOOSE: Loose

STRICT: Strict

Default value: LOOSE

kigroup

(optional)

Assignment of the process instance-independent

measure to an existing measure group

PPM CUSTOMIZING

164

ELEMENT and
ATTLIST pikidef

Description

description Language-specific description of a process

instance-independent measure. The description

must be specified in at least the default language.

datatype Data type of the values of a process

instance-independent measure

You can define any number of data series (pikicube XML elements) within a measure

configuration. In a data series, you can specify any number of process instance-independent

measure definitions (pikidef XML elements). The same dimension reference applies to all

process instance-independent measure definitions of a data series (refdim XML elements).

You can conveniently configure process instance-independent data series in the sub-module

Process instance-independent measures in the PPM CTK module Measures and

dimensions.

You can export all process instance-independent data series configured in a PPM system via

the XML interface using the runppmconfig command line program with the parameter

-keyindicator to an XML file.

Example 1
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
 ...
 <pikicube name="PIKICUBE_TURNOVER_PROD_GROUP">
 <pikidef name="TURNOVER_PROD_GROUP"
 retrievertype="KEYINDICATOR"
 dimreferring="STRICT"
 kigroup="KI_GROUP_COST">
 <description language="de"
 name="Umsatz pro Produktgruppe"/>
 <description language="en"
 name="Turnover by product group"/>
 <datatype name="DOUBLE"/>
 </pikidef>
 <refdim name="TIME" refinement="BY_MONTH"/>
 <refdim name="D_PRODUCT_GROUP"/>
 <refdim name="PROCESSTYPE" refinement="BY_LEVEL2"/>
 </pikicube>
 ...
</keyindicatorconfig>

A data series with the internal name PIKICUBE_TURNOVER_PROD_GROUP is created.

PPM CUSTOMIZING

165

The definition (pikidef) of the process instance-independent measure

TURNOVER_PROD_GROUP specifies a strict dimension reference (dimreferring="STRICT")

and an assignment of the process instance-independent measure to the KI_GROUP_COST

measure group.

The process instance-independent measure (refdim="...") strictly refers to the TIME,

D_PRODUCT_GROUP, and PROCESSTYPE dimensions. The reference to the PROCESSTYPE

dimension is defined with the detailed (refinement="BY_LEVEL2") step width.

Since the iskeydimension attribute is not specified in the refdim elements, the default

attribute value TRUE is used, that is, all referenced dimensions are used as key dimensions of

the data series.

Example 2
...
 <pikicube name="PIKICUBE_COSTS">
 <description language="en" name="Costs"/>
 <pikidef name="OVERHEAD_COSTS"
 retrievertype="KEYINDICATOR"
 dimreferring="LOOSE">
 <description language="en" name="Overhead costs"/>
 <datatype name="COST"/>
 </pikidef>
 <refdim name="PROCESSTYPE" refinement="BY_LEVEL2"
 iskeydimension="FALSE"/>
 <refdim name="TIME" refinement="BY_MONTH"
 iskeydimension="TRUE"/>
 <refdim name="MATERIAL" refinement="BY_LEVEL2"
 iskeydimension="TRUE"/>
 </pikicube>
...

This file extract defines the data series Costs with the process instance-independent

measure Overhead costs of the data type COST with the internal name OVERHEAD_COSTS

which is unique in the PPM system.

The measure value retriever type is averaging (KEYINDICATOR) and the dimension reference

is loose (LOOSE).

In the refdim XML elements, the PPM dimensions TIME and MATERIAL are specified as key

dimensions (iskeydimension="TRUE") of the dimension reference for the process

instance-independent data series.

Additionally, step widths that differ from the default step widths are specified for the

dimension values to be imported.

PPM CUSTOMIZING

166

REGISTRATION OF PROCESS INSTANCE-INDEPENDENT MEASURES AT THE PPM
SYSTEM

Process instance-independent measures are registered in the process tree (useki element in

the XML file with the document type definition keyindicatorprocesstree.dtd) at process

type groups and process types.

Further information on registering process instance-independent measures at the process

tree is available in chapter Register measures and dimensions of process

instance-independent data series (page 220).

8.2.4.1 Usage (type) of a data series

You need to select one of the following usages (pikicube type="...") for a data series, which

specifies the dimensions that are allowed to be used in the PIKI cube:

 Process (PROCESS default value)

 Function (OT_FUNC)

 Relation (RELATION)

Regardless of the selected type of data series, process instance-independent measures are

always of the PROCESS type, that is, they are handled like process measures.

The effects of the PIKI cube types are as follows.

PROCESS

Only process dimensions (dimtype="PROCESS" in the definition of the dimension) are

allowed as referenced dimensions (refdim="...") in the data series.

OT_FUNC

Only process and function dimensions (dimtype="PROCESS" or "OT_FUNC" or "FUNCTION")

are allowed as referenced dimensions in the data series.

RELATION (WITH RELATION NAME <X>)

Only process dimensions, relation dimensions of the relation <x>, and source and target

dimensions of the relation <x> (that is, FPROCESSTYPE, FROMORG, TOORG, FUNCTION,

ORGUNIT) are allowed as referenced dimensions of the data series.

PPM CUSTOMIZING

167

8.2.4.2 Dimension reference

Process instance-independent measures can have a loose or strict dimension reference

(dimreferring XML attribute). The default value is loose dimension reference

(dimreferring="LOOSE").

LOOSE DIMENSION REFERENCE

A process instance-independent measure with a loose dimension reference can be analyzed

for all available dimensions. The process instance-independent measure also delivers values

for queries with step widths other than that specified for the process instance-independent

measure (refinement XML attribute) and for dimensions for which no reference is defined.

If you are analyzing a process instance-independent measure with a dimension for which no

dimension reference (refdim XML element) has been defined, this dimension is ignored in the

value calculation for the process instance-independent measure. The process

instance-independent measure values shown only apply to the dimensions referred to in the

definition of the process instance-independent measure data series.

Likewise, queries with a more detailed step width return the process instance-independent

measure values that refer to the defined step widths. This means that other step widths are

ignored in the analysis.

Example

Overhead costs Total costs Customer
(rough, detailed)

Time
(by month)

1000 € 25000 € Germany, Becker Jan 2001

3000 € 68000 € Germany, Schmidt Jan 2001

1500 € 13000 € France, Leclerc Jan 2001

1200 € 12000 € Germany, Becker Feb 2001

3400 € 78000 € Germany, Schmidt Feb 2001

...

The table lists the process instance-independent measures Overhead costs and Total costs

with reference to the Customer and Time dimensions. If your analysis queries the overhead

costs for the customer Germany, Becker for 15th Jan 2001, you obtain the return value

1000 € for the process instance-independent measure. However, this value actually relates

to the whole month of January 2001 (refinement="BY_MONTH").

Make sure to observe the defined dimension references of a process instance-independent

measure as well as the specified step widths of the referenced dimensions in order to ensure

plausible analysis results.

PPM CUSTOMIZING

168

STRICT DIMENSION REFERENCE

A process instance-independent measure with a strict dimension reference can only be

evaluated with the dimensions to which it refers to in the definition of the data series (refdim

XML elements). Queries for dimensions to which the process instance-independent measure

does not refer are not possible. Queries with a step width other than that defined are not

possible, either.

If a different step width or dimension is selected in the analysis, a corresponding error dialog

is displayed.

THE SPECIAL CASE OF THE "PROCESS TYPE" DIMENSION REFERENCE

If you specify the dimension Process type (PROCESSTYPE) as dimension reference in a

process instance-independent data series, only process types that already exist in the PPM

system can be used for data import. If you try to import process instance-independent data

into a process type that does not exist the import outputs an error message including the

involved data rows. The process tree is not automatically extended. Data import is not

aborted but the data rows with the non-existing process type are not imported.

8.2.4.3 Definition of process instance-independent
measures in multi-byte character sets

The following extract from the measure configuration file shows an example of the definition

options for process instance-independent data series when using a multi-byte character set:

...
<!-- Όρισμος σειράς δεικτών -->
 <pikicube name="PIKICUBE_1">
 <description name="Umsatz" language="de"/>
 <description name="Turnover" language="en"/>
 <description name="Τζίρος" language="el"/>
 <pikidef name="PIKI_1"
 retrievertype="NUM_KEYINDICATOR"
 dimreferring="LOOSE"
 kigroup="KI_GROUP_COST">
 <description name="Umsatz" language="de"/>
 <description name="Turnover" language="en"/>
 <description name="Τζίρος" language="el"/>
 <datatype name="COST"/>
 </pikidef>
 <pikidef name="PIKI_2"
 retrievertype="KEYINDICATOR"
 dimreferring="LOOSE">
 <description name="Kundenzufriedenheit"
 language="de"/>
 <description name="Customer satisfaction"
 language="en"/>

PPM CUSTOMIZING

169

 <description name="Ευχαρίστηση των πελατών"
 language="el"/>
 <datatype name="DOUBLE"/>
 </pikidef>
 <refdim name="MATERIAL"/>
 </pikicube>
...

8.2.4.4 Configuration import

Process instance-independent data series are imported together with the measure

configuration by means of the command line program runppmconfig (see PPM Operation

Guide):

runppmconfig –user <user name> –password <password>
 [–client <client name>]
 –mode import
 [–overwrite]
 –keyindicator <XML measure configuration>

The executing user must have the Configuration import function privilege.

ADDITIVE CONFIGURATION IMPORT

By default, that is, without the option -overwrite, the import of the measure configuration is

additive, that is, data series that already exist in the PPM system are retained and remain

unchanged.

For each imported data series, a database table with the internal name of the data series

(pikicube name="...") is created and the corresponding data structure is established on the

analysis server.

OVERWRITING CONFIGURATION IMPORT

When importing a changed configuration of a process instance-independent data series at a

later time using the command line option runppmconfig -mode import -overwrite, you

must observe whether your changes affect the data structure of the existing data series (see

below).

If they do, you must first delete the data imported into the data series before you import the

changed configuration, if they do not, this is unnecessary.

CHANGES THAT DO NOT AFFECT THE DATA STRUCTURE

By specifying the option -overwrite you can make the following changes to the configuration

of data series existing in the PPM system without first having to delete already imported data:

PPM CUSTOMIZING

170

 Add further key dimensions or non-key dimensions and other process

instance-independent measures

 Change a referenced dimension to a key dimension (iskeydimension="TRUE")

 Change the description of a data series (PIKI cube)

 Change the usage of a data series (for example, type="PROCESS" to type="FUNCTION")

 Assign a data series to a different relation (relname="...")

 Change the dimension reference (loose/strict) for non-key dimensions

 Change the measure value retriever type

 Change the option editable

CHANGES THAT AFFECT THE DATA STRUCTURE

If you want to import configuration changes that affect the data structure of a data series,

you may need to delete previously imported data of the data series first (via the PPM user

interface or the command line program runpikidata with the option -mode delete). Only then

you can import the changed configuration using the import parameter -overwrite.

If the data series still contains data during the import of data structure relevant configuration

changes, an error message is output and the new definition of the data series is not

transferred. Import of allowed configuration changes is not canceled.

Configuration changes that affect the data structure include:

 Deleting a referenced dimension (key dimension, non-key dimension)

 Deleting a process instance-independent measure

 Changing a key dimension to a non-key dimension (iskeydimension="FALSE")

 Changing the step width of a referenced dimension or the data type of a process

instance-independent measure

8.2.4.5 Data series migration

Please observe the following before you migrate existing process instance-independent data

series from a PPM system version 4 to a PPM system version 9 using the command line

program runppmconverter.bat in <installation

directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-<ver

sion>-runnable.zip\ppm\bin:

PPM CUSTOMIZING

171

 Before conversion, you need to back up import data of process instance-independent

data series from a PPM database version 4 to an XML file (see PPM Migration Guide).

If configuration changes affecting the structure of data series are required before the

conversion of existing data series you need to delete any existing import files before the

conversion (see chapter Configuration import (page 169)), otherwise, the conversion

program aborts with an error message.

If you use the command line converter with the option -ignorepikidata all existing import

data of existing data series are completely deleted before conversion.

After conversion of the configuration for PPM version 9 you can import the exported data

again, see technical reference PPM Data Import.

 Data series containing referenced measures that are no longer supported (refki XML

elements) are not converted automatically. The conversion program outputs a message

that, if required, you can export existing data of the data series, adapt the configuration

accordingly, and reimport the data including the adapted configuration.

 If you use the XML attribute deletedataonredefinition, which is no longer supported, in

existing process instance-independent data series, it must be removed manually from

the configuration before conversion.

 Data series in the PPM system version 9 are preconfigured with the PROCESS type. If the

data series to be converted contain different measure types (RELATION, OT_FUNC,

OT_ORG) they cannot be converted automatically. The configuration must be adapted

manually before conversion.

8.2.4.6 Additional information: User-defined measures
based on process instance-independent
measures

If a user-defined measure created based on process instance-independent measures is used

in the analysis with dimensions, which are defined for all measures involved, the user-defined

measure only returns values if values of the relevant dimension step can be determined for all

measures (intersection of dimension values involved).

When using process instance-independent measures with a strict dimension reference in the

calculation of user-defined measures, take account of the following additional points:

 If two or more process instance-independent measures are used in a user-defined

measure, the range of values of the individual dimensions to which the process

instance-independent measures refer should be identical.

PPM CUSTOMIZING

172

 In order for a process instance-independent measure to be included in the calculation

rule for a user-defined measure, at least one dimension to which the process

instance-independent measure refers must be registered at the process tree at the same

point as the user-defined measure.

If these two requirements are not met, an information dialog like the following is shown when

the user-defined measure is called up:

Example

The user-defined measure Total costs consists of process costs and overhead costs.

The process measure Process costs returns values based on process instances from the

months of January to March 2001 and June to December 2001.

The process instance-independent measure Overhead costs has values for Jan to Jun 2001.

With a monthly analysis in 2001, the user-defined measure Total costs only returns values

for the months of January, February, March and June 2001.

8.2.5 Definition of measure groups

Measure groups are defined in the configuration file KiGroup.xml. A distinction is made

between the visible measure groups (kigrouproot or kigroup) and a single invisible measure

group (kigroupinvisible). A measure can only be assigned to one group.

The grouping of measures does not represent a hierarchy or refinement of the measures; it is

merely to improve the clarity.

The kigroup elements can be nested at any depth. This allows you to establish an individual

folder structure for your measure groups.

Use PPM Customizing Toolkit to create measure groups. Your preferred group structure can

be defined easily in the Measures and dimensions module.

PPM CUSTOMIZING

173

Example
<kigrouproot>
 <description language="de" name="Alle Kennzahlen">
 Diese Gruppe umfasst alle angezeigten Kennzahlen.
 </description>
 <description language="en" name="All measures">
 This group includes all displayed
 measures.
 </description>
 <kigroupinvisible>
 <description language="de"
 name="Unsichtbare Kennzahlen">
 Diese Gruppe umfasst alle Kennzahlen, die
 nur zur Berechnung weiterer Kennzahlen verwendet
 werden. Diese Kennzahlen werden nicht in der
 Kennzahlenliste angezeigt.
 </description>
 <description language="en" name="Invisible measures">
 This group includes all measures
 that are merely used for calculation
 of additional measures. These
 measures are not displayed in
 the measure list.
 </description>
 </kigroupinvisible>
 <kigroup name="KI_GROUP_COST">
 <description language="de" name="Kostenkennzahlen"/>
 <description language="en" name="Cost KPIs"/>
 <kigroup name="KI_GROUP_COST">
 <description language="de"
 name="Kostenkennzahlen"/>
 <description language="en" name="Cost KPIs"/>
 <kigroup name="KI_GROUP_COST_ALL">
 <description language="de"
 name="Gesamtkostenkennzahlen"/>
 <description language="en"
 name="Total cost KPIs"/>
 </kigroup>
 <kigroup name="KI_GROUP_COST_AVERAGE">
 <description language="de
 name="Durchschnittskostenkennzahlen"/>
 <description language="en"
 name="Average cost KPIs"/>
 </kigroup>
 </kigroup>
 </kigroup>
 <kigroup name="KI_GROUP_TIME">
 <description language="de" name="Zeitenkennzahlen"/>
 <description language="en" name="Time KPIs"/>
 </kigroup>
 <kigroup name="KI_GROUP_QUALITY">
 <description language="de"
 name="Qualitätskennzahlen"/>
 <description language="en" name="Quality KPIs"/>
 </kigroup>

PPM CUSTOMIZING

174

</kigrouproot>

The All measures group includes the measures from all groups and subgroups except those

from the Invisible measures group. Measures that you have not explicitly assigned to a

specific group are automatically assigned to the All measures group. Even measures that you

have assigned to a group that does not exist are also assigned to this group.

In the PPM front-end, the Measures tab displays all measures from the selected measure

group and all subgroups, with the exception of measures from the Invisible measures group,

which are only displayed if that group is selected.

The group of invisible measures KI_GROUP_INVISIBLE is located directly below the root and

its structure cannot be extended.

Warning

The group identifiers KI_GROUP_ROOT and KI_GROUP_INVISIBLE are fixed by the PPM

system and may not be used in a different context or changed.

The structure of the configuration file KIGroup.xml is specified by the DTD KIGroup.dtd:

GENERAL STRUCTURE

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE kigrouproot SYSTEM 'KIGroup.dtd'>
<kigrouproot>
 <description language="de" name="...">...</description>
 <description language="en" name="...">...</description>
 <kigroupinvisible>
 <description language="de" name="...">...</description>
 <description language="en" name="...">...</description>
 </kigroupinvisible>
 <kigroup name="...">
 <description language="de" name="...">...</description>
 <description language="en" name="...">...</description>
 <kigroup name="...">
 <description language="de" name="..."/>
 <description language="en" name="..."/>
 <kigroup name="...">
 <description language="de" name="...">...</description>
 <description language="en" name="...">...</description>
 ...
 </kigroup>
 ...

PPM CUSTOMIZING

175

 </kigroup>
 ...
 </kigroup>
 <kigroup name="...">
 <description language="de" name="..."/>
 <description language="en" name="..."/>
 ...
 </kigroup>
 <kigroup name="...">
 <description language="de" name="..."/>
 <description language="en" name="..."/>
 ...
 </kigroup>
 ...
</kigrouproot>

Example

The example below illustrates the display of the XML file in the PPM front-end interface:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE kigrouproot SYSTEM 'KIGroup.dtd'>

<kigrouproot>
 <description language="de" name="Alle Kennzahlen">
 Diese Gruppe umfasst alle angezeigten Kennzahlen mit
 Ausnahme der unsichtbaren Kennzahlen.
 </description>
 <description language="en" name="All measures">
 This group includes all displayed measures
 except for the invisible
 ones.
 </description>
 <kigroupinvisible>
 <description language="de" name="Unsichtbare Kennzahlen">
 Diese Gruppe umfasst alle Kennzahlen, die nur
 zur Berechnung weiterer Kennzahlen verwendet werden.
 Diese Kennzahlen werden nicht in der
 Kennzahlenliste angezeigt.
 </description>
 <description language="en" name="Invisible KPIs">
 This group includes all measures
 that are merely used for calculation of additional
 measures. These measures
 are not displayed in the measure
 list, unless the group of
 invisible measures is selected.
 </description>
 </kigroupinvisible>
 <kigroup name="KI_GROUP_COST">
 <description language="de" name="Kostenkennzahlen"/>
 <description language="en" name="Cost KPIs"/>
 </kigroup>
 <kigroup name="KI_GROUP_TIME">
 <description language="de" name="Zeitenkennzahlen"/>
 <description language="en" name="Time KPIs"/>

PPM CUSTOMIZING

176

 </kigroup>
 <kigroup name="KI_GROUP_QUALITY">
 <description language="de" name="Qualitätskennzahlen"/>
 <description language="en" name="Quality KPIs"/>
 </kigroup>
</kigrouproot>

8.2.5.1 Visible measure groups

A measure group is defined in the configuration file by the following XML element:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE kigrouproot SYSTEM 'KIGroup.dtd'>
<kigrouproot>
 <description language="de" name="...">
 Description text...
 </description>
 ...
 <kigroup name="...">
 <description language="de" name="..."/>
 <description language="en" name="..."/>
 </kigroup>
 ...
</kigrouproot>

XML tag Description

kigrouproot Root of measure groups. Displayed as the top level

group folder in the PPM front-end.

description Language-specific description of the measure group

root. Must be specified in at least the default

language.

kigroup Measure group to be defined. Each group can contain

sub-groups. You can create any number of groups

and sub-groups.

The group structure corresponds to a tree structure

with any number of branches.

name Internal name of the group. Referenced by the

kigroup XML attribute from the measure definition

(kidef XML element) in the measure configuration.

PPM CUSTOMIZING

177

XML tag Description

description Language-specific description of a group, optionally

with tooltip (#PCDATA section in the description

element). The description must be specified in at least

the default language.

8.2.5.2 Group of invisible measures

The Invisible measures group contains all measures that are only displayed in the measure

list when the group is actually selected. Only then are they available in the analysis. The

invisible measures are not displayed in the measure lists for all other measure groups. The

group of invisible measures is unique and cannot be structured.

Assign measures that are exclusively used as an interim result for the calculation of other

measures to the group of invisible measures

(<kidef name="..." kigroup="KI_GROUP_INVISIBLE" ... />).

The group is configured in the XML configuration file *_kigroup.xml of the corresponding

PPM CTK client template (under PPM installation

directory>\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-client-run

-prod-<version>-runnable.zip\ppm\ctk\ctk\examples\custom\) by the following element:

...
 <kigroupinvisible name="...">
 <description language="de" name="..."/>
 <description language="en" name=".."/>
 </kigroupinvisible>
...

PPM CUSTOMIZING

178

8.3 Definition of dimensions

Dimensions are defined together with measures in the client-specific measure configuration.

The PPM system makes a distinction between the following dimension types:

Dimension XML element Description

One-level oneleveldim One-level dimensions are used if the

number of dimension values is low and

no meaningful grouping of the values is

possible.

Example: Name of the source system,

input channel for a call center (for

example, call, fax, e-mail)

Attribute data type: All. Numerical

attribute values are converted to text.

Two-level twoleveldim Two-level dimensions are used if

meaningful grouping of the dimension

values is possible.

Example: Process type group/Process

type, Material type/Material

Attribute data type: All. Numerical

attribute values are converted to text.

Dimension values are saved as the

TEXTPAIR data type.

N-level nleveldim For text dimensions with more than two

levels.

Floating

point

number

floatingdim Dimension is based on floating point

values. The dimension values represent

particular intervals. Example: Order

volume

Attribute data type: DOUBLE,

TIMESPAN, PERCENTAGE and all

user-defined types derived from them

Time timedim Indicates the change of a measure over

time.

Attribute data types:

DAY, TIME

PPM CUSTOMIZING

179

Dimension XML element Description

Time of day hourdim Indicates the change of a measure over

time.

Attribute data type: TIMEOFDAY

Period timerange Indicates the change of a measure

within a specific period.

Search

dimension

searchdim Search for process instances using

attribute values

Attribute data type: TEXT

Search dimensions cannot be displayed

as dimensions in the analysis.

The attributes required for creating text and floating point number dimensions are specified

in a corresponding dimitem XML element. If the referenced attribute is an attribute to be

calculated, this must be specified (calculated="TRUE"), so that the attribute can be

calculated before creation of the dimension. In addition, you need to specify whether it is a

process or function dimension.

When defining dimensions, ensure that the data type of the referenced attributes is

compatible with the selected dimension type.

8.3.1 Definition of dimension groups

Dimension groups are defined in the configuration file DimGroup.xml. A distinction is made

between visible dimension groups (dimgroup or dimgrouproot) and a single invisible

dimension group (dimgroupinvisible). A dimension can only be assigned to one group.

The grouping of dimensions does not represent a hierarchy or refinement of the dimensions;

it is merely to improve the clarity.

The dimgroup elements can be nested at any depth. This allows you to establish an individual

folder structure for your dimension groups.

Use PPM Customizing Toolkit to create dimension groups. Your preferred group structure can

be defined easily in the Measures and dimensions module.

In the PPM front-end, the Dimensions tab shows all dimensions in the selected dimension

group and all sub-groups with the exception of dimensions from the Invisible dimensions

group.

PPM CUSTOMIZING

180

The invisible dimensions group DIM_GROUP_INVISIBLE is located directly below the root

and its structure cannot be extended. It contains all internal dimensions and is not displayed

in the user interface.

Dimensions that you do not assign to a dimension group are automatically assigned to the

root DIM_GROUP_ROOT (All dimensions group).

Warning

The group identifiers DIM_GROUP_ROOT and DIM_GROUP_INVISIBLE are fixed by the PPM

system and may not be used in a different context or changed.

Example
<dimgrouproot>
 <description name="Alle Dimensionen" language="de">
 Diese Gruppe beinhaltet alle angezeigten Dimensionen.
 </description>
 <description name="All dimensions" language="en">
 This group includes all displayed dimensions.
 </description>
 <dimgroupinvisible>
 <description name="Nicht sichtbare Dimensionen"
 language="de">
 Diese Gruppe beinhaltet alle internen Dimensionen.
 </description>
 <description name="Invisible dimensions"
 language="en">
 This group includes all internal dimensions.
 </description>
 </dimgroupinvisible>
 <dimgroup name="DIM_GROUP_CRITERIA">
 <description name="Criteria" language="de">
 Diese Gruppe beinhaltet Dimensionen, die
 als Unterscheidungskriterien dienen.
 </description>
 <description name="" language="en" />
 <dimgroup name="DIM_GROUP_CUST">
 <description name="Kundendimensionen" language="de">
 Diese Gruppe beinhaltet alle kundenrelevanten
 Dimensionen.
 </description>
 <description name="Customer dimensions"
 language="en"/>
 </dimgroup>
 <dimgroup name="DIM_GROUP_PRINC">
 <description name="Auftraggeberdimensionen"
 language="de">
 Diese Gruppe beinhaltet alle
 auftraggeberrelevanten Dimensionen.
 </description>
 <description name="Principal dimensions"
 language="en"/>
 <dimgroup name="DIM_GROUP_USA">
 <description name="Auftraggeber in USA"

PPM CUSTOMIZING

181

 language="de">
 Diese Gruppe beinhaltet alle Dimensionen
 für Auftraggeber in den USA.
 </description>
 <description name="Customers USA" language="en" />
 </dimgroup>
 <dimgroup name="DIM_GROUP_EUROPE">
 <description name="Auftraggeber in Europa"
 language="de">
 Diese Gruppe beinhaltet alle Dimensionen für
 Auftraggeber in Europa.
 </description>
 <description name="Principals Europe"
 language="en"/>
 </dimgroup>
 </dimgroup>
 </dimgroup>
 <dimgroup name="DIM_GROUP_TIME">
 <description name="Zeitdimensionen"
 language="de">
 Diese Gruppe beinhaltet alle Zeitdimensionen.
 </description>
 <description name="Time dimensions" language="en" />
 </dimgroup>
</dimgrouproot>

8.3.2 Text dimensions

This dimension type comprises three types of dimension that use similar configurations for

the definition of the relevant dimension levels: One-level, two-level, and n-level text

dimensions. N-level dimensions can have any number of hierarchy levels.

Each definition of a dimension level (leveldesc XML element) is made up of an obligatory key

(first dimitem XML element) and an optional description (second dimitem XML element). The

language-specific interface names of the dimensions, keys, and descriptions for the

individual levels (description XML elements) must be specified in the default language. The

individual keys and descriptions refer to attributes of the TEXT type, which have values that

PPM can display in the analysis and in the filter dialogs.

8.3.2.1 General XML structure

8.3.2.1.1 One-level dimension

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM

PPM CUSTOMIZING

182

 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <oneleveldim name="..." dimtype="..."
 internal="..." importmode="..." dimgroup="...">
 <description language="..." name="..."/>
 <leveldesc>
 <dimitem attrname="..." colname="..."
 calculated="..." location="..." substvalue="...">
 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 <dimitem attrname="..."
 colname="..." calculated="...">
 <description language="..." name="..."/>
 </dimitem>
 </leveldesc>
 </oneleveldim>
 ...
</keyindicatorconfig>

8.3.2.1.2 Two-level dimension

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <twoleveldim name="..." dimtype="..." internal="..."
 importmode="..." dimgroup="...">
 <description language="..." name="..."/>
 <leveldesc>
 <dimitem attrname="..." colname="..."
 calculated="..." location="..." substvalue="...">

 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 <dimitem attrname="..." colname="..."
 calculated="...">
 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="..." colname="..."
 calculated="...">
 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 <dimitem attrname="..." colname="..."
 calculated="...">

PPM CUSTOMIZING

183

 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 </leveldesc>
 </twoleveldim>
 ...
</keyindicatorconfig>

8.3.2.1.3 N-level dimension

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <nleveldim name="..." dimtype="..." internal="..."
 importmode="..." dimgroup="...">
 <description name="..." language="..."/>
 <leveldesc>
 <dimitem attrname="..." colname="..."
 calculated="..." location="..." substvalue="...">
 <description language="..." name="..." />
 <defaultvalue="..."/>
 </dimitem>
 <dimitem attrname="..." colname="..."
 calculated="...">
 <description language="..." name="..."/>
 <defaultvalue="..."/>
 </dimitem>
 </leveldesc>
 <leveldesc>
 ...
 </leveldesc>
 <leveldesc>
 ...
 </leveldesc>
 ...
 </nleveldim>
 ...
</keyindicatorconfig>

By default, the values of the individual dimension levels are displayed in the form

<Description (Key)> in PPM, provided that descriptions have been defined. Otherwise, only

the key is displayed as the value.

Example

If the attribute referenced by the first dimitem contains the definition of a key ID and the

attribute referenced by the second dimitem contains the corresponding description Text,

PPM CUSTOMIZING

184

the dimension values for this level are displayed by default in the form <Text> (<ID>) in the

user interface.

The extract from the configuration file for a similar example looks like this.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <oneleveldim name="VTWEG" dimtype="PROCESS"
 internal="no" importmode="OPTIONAL">
 <description language="de" name="Vertriebsweg"/>
 <description language="en"
 name="Distribution channel"/>
 <leveldesc>
 <dimitem attrname="AT_VTWEG"
 colname="FIRST_ID" calculated="FALSE">
 <description language="de"
 name="ID des Vertriebsweg"/>
 <description language="en"
 name="ID of distribution channel"/>
 </dimitem>
 <dimitem attrname="AT_VTWEG_NAME"
 colname="FIRST_DESC" calculated="FALSE">
 <description language="de"
 name="Vertriebsweg"/>
 <description language="en"
 name="Distribution channel"/>
 </dimitem>
 </leveldesc>
 </oneleveldim>
 ...
</keyindicatorconfig>

The dimitem XML element configures the following settings for the key or description of a

dimension level:

XML tag Description

attrname Name of the referenced attribute. Only the TEXT data

type is permitted.

calculated TRUE: The attribute value is calculated.

The default value is FALSE.

PPM CUSTOMIZING

185

XML tag Description

location Only for dimtype="RELATION"

Valid values: SOURCE (attribute placement on source

reference object of relation)

TARGET (attribute placement on target reference

object of relation)

THIS (default value: attribute is placed at the relation

itself)

defaultvalue

(optional)

Specifies a default value that is displayed if no

attribute value can be retrieved and if no value is or

can be retrieved using substvalue. If neither

defaultvalue nor substvalue has been specified, the

value of the PPM_NULL key from the file

Database_settings.properties is displayed if an

attribute value cannot be retrieved.

substvalue

(optional)

Specifies a substitute value that is displayed if no

attribute value can be retrieved. The attribute value

from the previous, rougher level (PRED) or the next,

more detailed level (SUCC) can be used as a

substitute value. Substitute values may cover several

consecutive levels. If no value can be retrieved using

the specifications for substvalue (for

example, substvalue="SUCC" for a one-level

dimension), no substitute value is displayed. Default

value: NONE (no substitute value)

XML element Description

compression

value

(optional

sub-element for

dimitem)

The internal aggregation attribute

AT_INTERNAL_COMPRESSCRITERION must be

specified (Configure the internal aggregation

attribute (page 239)).

Only for dimtype="PROCESS"

Identical and differing dimension values are deleted

when permanently aggregating using the command

prompt (runppmcompress) (see PPM Operation

Guide) and they are replaced by the specified

PPM CUSTOMIZING

186

XML element Description

aggregation value (Change aggregation behavior

(page 239)).

SUBSTITUTE AND DEFAULT VALUES FOR ONE-, TWO-, AND N-LEVEL
DIMENSIONS

You can specify default values and substitute values for the keys and descriptions of each

individual dimension level. These values are displayed if no attribute value can be retrieved.

When you select the dimension value to be displayed, the sequence is as follows:

1. Attribute value

2. Substitute value (substvalue)

3. Default value (defaultvalue)

4. DB default value (value of the PPM_NULL key in the file Database_settings.properties)

Warning

The two-level Process type dimension does not support default or substitute values. If you

specify these in the configuration, they are deleted during the import.

Example (file extract from measure configuration)
...
<nleveldim name="SALE" dimtype="PROCESS"
 dimgroup="DIM_GROUP_CRITERIA">
 <description name="Sales" language="en"/>
 <leveldesc>
 <dimitem attrname="AT_VKORG" colname="NAME_1"
 calculated="FALSE">
 <description language="en"
 name="Sales organization"/>
 </dimitem>
 <dimitem attrname="AT_VKORG_NAME"
 colname="DESC_NAME_1" calculated="FALSE">
 <description language="en"
 name="Name of sales organization"/>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_DIVISION" colname="NAME_2"
 calculated="FALSE" substvalue="SUCC">
 <description language="en" name="Division"/>
 <defaultvalue>defaultvalue 2nd level ID
 </defaultvalue>
 </dimitem>
 <dimitem attrname="AT_DIVISION_NAME"
 colname="DESC_NAME_2" calculated="FALSE"
 substvalue="SUCC">
 <description language="en" name="Division name"/>

PPM CUSTOMIZING

187

 <defaultvalue>defaultvalue 2nd level description
 </defaultvalue>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_VTWEG" colname="NAME_3"
 calculated="FALSE">
 <description language="en"
 name="Distribution channel"/>
 </dimitem>
 <dimitem attrname="AT_VTWEG_NAME"
 colname="DESC_NAME_3" calculated="FALSE">
 <description language="en"
 name="Name of distribution channel"/>
 </dimitem>
 </leveldesc>
</nleveldim>
...

Substitute values (substvalue) are defined for the key and description of the second level of

the SALE n-level dimension. These substitute values are transferred to the subsequent third

level. If no substitute value can be retrieved, the specified default value (defaultvalue) is

displayed instead.

Text dimensions are normally based on alphanumeric attribute types. The dimension values

are displayed in the interface in alphanumeric order.

When using attributes based on numerical data types, the dimension values are written to the

database as strings and are sorted in numerical order when displayed in the interface.

8.3.2.2 Configuration

8.3.2.2.1 One-level dimensions

A one-level dimension (oneleveldim XML element) is described in full by only one level

definition (leveldesc XML element). The language-specific names of the dimension, key, and

description are specified in the description XML elements.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <oneleveldim name="VTWEG" dimtype="PROCESS"
 internal="no" importmode="OPTIONAL">
 <description language="de" name="Vertriebsweg"/>
 <description language="en"

PPM CUSTOMIZING

188

 name="Distribution channel"/>
 <leveldesc>
 <dimitem attrname="AT_VTWEG" colname="FIRST_ID"
 calculated="FALSE">
 <description language="de"
 name="ID des Vertriebsweg"/>
 <description language="en"
 name="ID of distribution channel"/>
 </dimitem>
 <dimitem attrname="AT_VTWEG_NAME"
 colname="FIRST_DESC" calculated="FALSE">
 <description language="de" name="Vertriebsweg"/>
 <description language="en"
 name="Distribution channel"/>
 </dimitem>
 </leveldesc>
 </oneleveldim>
 ...
</keyindicatorconfig>

XML attribute Description

name Name of the dimension. A table is created in the

database under this name. For the specified name,

the guidelines described in the Table name chapter

are applicable.

dimtype Dimension type: Valid values:

PROCESS (process dimension)

FUNCTION (function dimension, obsolete, only to be

used for compatibility reasons)

OT_FUNC (function dimension)

RELATION (relation dimension)

OT_ORG (organizational dimension)

internal Internal use of the dimension

yes: The dimension is used internally and is not

displayed in the interface.

The default value is no.

importmode Output of error messages when calculating

dimension values

OPTIONAL: Calculation errors are not output.

MANDATORY: Calculation errors are output

Default value: OPTIONAL

dimgroup Dimension group to which the dimension is assigned

PPM CUSTOMIZING

189

XML attribute Description

(optional)

XML element Description

compression

value

(optional

sub-element for

dimitem)

The internal aggregation attribute

AT_INTERNAL_COMPRESSCRITERION must be

specified (Configure the internal aggregation

attribute (page 239)).

Only for dimtype="PROCESS"

Identical and differing dimension values are deleted

when permanently aggregating using the command

prompt (runppmcompress) (see PPM Operation

Guide) and they are replaced by the specified

aggregation value (Change aggregation behavior

(page 239)).

To avoid the not specified dimension step for a dimension, specify

importmode="MANDATORY" so that process instances that cannot be assigned to any

dimension step are identified when importing the data by the output of a corresponding

message.

INTERNAL DIMENSIONS

Internal dimensions (internal="yes") are not displayed in the PPM front-end interface. They

are used to distinguish administrative process instance characteristics.

USING MULTI-BYTE CHARACTER SETS

The following file extract from the measure configuration shows an example of the definition

options for one-level dimensions when using a multi-byte character set:

...
<oneleveldim name="D_PRODUCT_GR" dimtype="FUNCTION"
 internal="no" importmode="OPTIONAL">
 <description name="Produktgruppe" language="de"/>
 <description name="Product group" language="en"/>
 <description name="Ομάδα προϊόντων" language="el"/>
 <leveldesc>
 <dimitem attrname="ΙΔ_ΣΥΝ_ΠΡΟΪΟΝΤ_ΤΑΥΤ"
 colname="Column name_3" calculated="FALSE">
 <description language="de"
 name="ID Produktgruppe"/>
 <description language="en"

PPM CUSTOMIZING

190

 name="Product group ID"/>
 <description language="el"
 name="Ταυτότητα ομάδας προϊόντων"/>
 </dimitem>
 <dimitem attrname="ΙΔ_ΣΥΝ_ΠΡΟΪΟΝΤ_ΠΕΡΙΓΡ"
 colname="Column name_4" calculated="FALSE">
 <description language="de"
 name="Beschreibung Produktgruppe"/>
 <description language="en"
 name="Product group description"/>
 <description language="el"
 name="Περιγραφή της ομάδας προϊόντων"/>
 </dimitem>
 </leveldesc>
</oneleveldim>
...

8.3.2.2.2 Two-level dimensions

Two-level dimensions (twoleveldim XML element) are configured in the same way as

one-level dimensions, except that they consist of two level descriptions (leveldesc XML

elements). Multi-byte character sets are used in the same way as for one-level dimensions

(see chapter One-level dimension (page 181).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <twoleveldim name="PROCESSTYPE" dimtype="PROCESS"
 importmode="OPTIONAL">
 <description language="de" name="Prozesstyp"/>
 <description language="en" name="Process type"/>
 <leveldesc>
 <dimitem attrname="AT_PROCTYPEGROUP"
 colname="PROCTYPEGROUP" calculated="FALSE">
 <description language="de"
 name="Prozesstypgruppe"/>
 <description language="en"
 name="Process type group"/>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_PROCTYPE"
 colname="PROCTYPE" calculated="FALSE">
 <description language="de"
 name="Prozesstyp"/>
 <description language="en"
 name="Process type"/>
 </dimitem>
 </leveldesc>

PPM CUSTOMIZING

191

 </twoleveldim>
 ...
</keyindicatorconfig>

XML attribute Description

name Internal name of the dimension. A table is created in

the database under this name. For the specified

name, the guidelines described in the Table name

chapter are applicable.

dimtype Dimension type: Valid values:

PROCESS (process dimension)

FUNCTION (function dimension, obsolete, only to be

used for compatibility reasons)

OT_FUNC (function dimension)

RELATION (relation dimension)

OT_ORG (organizational dimension)

internal Internal use of the dimension

yes: The dimension is used internally and is not

displayed in the interface.

The default value is no.

importmode Output of error messages when calculating

dimension values

OPTIONAL: Calculation errors are not output.

MANDATORY: Calculation errors are output

Default value: OPTIONAL

dimgroup

(optional)

Dimension group to which the dimension is

assigned

XML element Description

compression

value

(optional

sub-element for

dimitem)

The internal aggregation attribute

AT_INTERNAL_COMPRESSCRITERION must be

specified (Configure the internal aggregation

attribute (page 239)).

Only for dimtype="PROCESS"

Identical and differing dimension values are deleted

when permanently aggregating using the command

PPM CUSTOMIZING

192

XML element Description

prompt (runppmcompress) (see PPM Operation

Guide) and they are replaced by the specified

aggregation value (Change aggregation behavior

(page 239)).

8.3.2.2.3 N-level dimensions

N-level dimensions are configured in the same way as one-level and two-level dimensions. An

n-level dimension consists of at least one and no more than <n> levels (leveldesc XML

elements). Each level contains a key (first dimitem XML element) and an optional description

(second dimitem XML element). All language-specific designations (name of dimension, key,

or description) are specified with the description XML element. The XML attributes are

identical to those used for one-level and two-level dimensions.

Example

(n-level dimension with three levels, with a key and description defined for each level)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <nleveldim name="SALE" dimtype="PROCESS"
 dimgroup="DIM_GROUP_CRITERIA">
 <description name="Sales" language="de"/>
 <leveldesc>
 <dimitem attrname="AT_VKORG"
 colname="NAME_1"calculated="FALSE">
 <description language="de"
 name="Verkaufsorganisation"/>
 </dimitem>
 <dimitem attrname="AT_VKORG_NAME"
 colname="DESC_NAME_1" calculated="FALSE">
 <description language="de" name="Name der
 sales organization"/>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_DIVISION"
 colname="NAME_2" calculated="FALSE">
 <description language="de" name="Division"/>
 </dimitem>
 <dimitem attrname="AT_DIVISION_NAME"
 colname="DESC_NAME_2" calculated="FALSE">
 <description language="de" name="Division name"/>

PPM CUSTOMIZING

193

 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_VTWEG"
 colname="NAME_3" calculated="FALSE">
 <description language="de" name="Vertriebsweg"/>
 </dimitem>
 <dimitem attrname="AT_VTWEG_NAME"
 colname="DESC_NAME_3" calculated="FALSE">
 <description language="de"
 name="Name des Vertriebswegs"/>
 </dimitem>
 </leveldesc>
 </nleveldim>
 ...
</keyindicatorconfig>

The Sales dimension is displayed as follows in the PPM user interface:

Multi-byte character sets are used in the same way as for one-level dimensions (see chapter

One-level dimensions (page 187).

8.3.2.3 Import dimension values

For one, two, and n-level dimensions, you can use the rundimdata command line program to

import data before the actual PPM import takes place. In this case, the values are imported as

pairs in the form <key-description> for each dimension level. Note that a key must be

specified, while the description is optional.

PPM CUSTOMIZING

194

You will find detailed information about importing dimension values for text dimensions in

advance of the actual PPM import in the PPM Data Import manual.

8.3.3 Floating point dimensions

Floating point dimensions (floatingdim XML element) are configured in the same way as

one-level dimensions except that the attributed referenced using the dimitem XML element

must be a numerical data type (for example, DOUBLE, LONG, TIMESPAN,

FACTORYTIMESPAN, FREQUENCY, PERCENTAGE, and all user-defined data types such as

COST).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <floatingdim name="ORDERVOL" dimtype="PROCESS"
 importmode="OPTIONAL">
 <description language="de" name="Auftragsvolumen"/>
 <description language="en" name="Order size"/>
 <dimitem attrname="AT_ORDERVOL" colname="ORDERVOL"
 calculated="FALSE">
 <description language="de" name="Umsatz"/>
 <description language="en" name="Sales revenues"/>
 </dimitem>
 </floatingdim>
 ...
</keyindicatorconfig>

XML tag Description

name Internal name of the dimension. A table is created

in the database under this name. For the specified

name, the guidelines described in the Table name

chapter are applicable.

dimtype Dimension type: Valid values:

PROCESS (process dimension)

FUNCTION (function dimension, obsolete, only to

be used for compatibility reasons)

OT_FUNC (function dimension)

RELATION (relation dimension)

OT_ORG (organizational dimension)

PPM CUSTOMIZING

195

XML tag Description

dimitem location

(optional)

Only for dimtype="RELATION"

Valid values: SOURCE (attribute placement on

source reference object of relation)

TARGET (attribute placement on target reference

object of relation)

THIS (default value: attribute is placed at the

relation itself)

importmode

(optional)

Output of error messages when calculating

dimension values

OPTIONAL: Calculation errors are not output.

MANDATORY: Calculation errors are output

Default value: OPTIONAL

8.3.4 Time dimensions

The configuration characteristics of a time dimension are summarized in the timedim XML

element.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <timedim name="DAY" dimtype="PROCESS" precision="DAY"
 attrname="AT_DAY" calculated="TRUE"
 importmode="OPTIONAL">
 <description language="de" name="Tag"/>
 <description language="en" name="Day"/>
 </timedim>
 ...
</keyindicatorconfig>

XML tag Description

name Internal name of the dimension, displayed in

paramset. A table is created in the database under

this name. For the specified name, the guidelines

described in the Table name chapter are applicable.

dimtype Dimension type: Valid values:

PROCESS (process dimension)

PPM CUSTOMIZING

196

XML tag Description

FUNCTION (function dimension, obsolete, only to be

used for compatibility reasons)

OT_FUNC (function dimension)

RELATION (relation dimension)

OT_ORG (organizational dimension)

location

(optional)

Only for dimtype="RELATION"

Valid values: SOURCE (attribute placement on

source reference object of relation)

TARGET (attribute placement on target reference

object of relation)

THIS (default value: attribute is placed at the relation

itself)

attrname Internal name of the referenced attribute

precision

(optional)

Most detailed step width of the dimension (DAY,

HOUR, MINUTE)

calculated TRUE: Attribute value must be calculated.

Default value: FALSE.

internal Mark as internal dimension with yes. Default value:

no

earlyalert Mark as critical dimension in Early alert system with

yes. Default value: no

importmode

(optional)

Output of error messages when calculating

dimension values

OPTIONAL: Calculation errors are not output.

MANDATORY: Calculation errors are output

Default value: OPTIONAL

dimgroup

(optional)

Name of the dimension group to which the time

dimension is to be assigned.

deleteon

compression

The internal aggregation attribute

AT_INTERNAL_COMPRESSCRITERION must be

specified (Configure the internal aggregation

attribute (page 239)).

Only for dimtype="PROCESS"

TRUE: Identical and differing dimension values are

PPM CUSTOMIZING

197

XML tag Description

deleted when permanently aggregating using the

command prompt (runppmcompress) (see PPM

Operation Guide) (Change aggregation behavior

(page 239)).

FALSE: When permanently aggregating via

command prompt, identical dimension values are

transferred to the aggregated EPC, while differing

values are deleted.

Default setting: FALSE

8.3.4.1 Time dimensions for the Early alert system

To monitor critical times in individual process instances as part of the Early alert system, you

can define special time dimensions in the measure configuration. These time dimensions are

identified by the earlyalert attribute having the value yes (PPM CTK: Enable the Early alert

check box). For all other time dimensions, this attribute has the value no by default.

 For better differentiation, the name of the dimension (name) should begin with the prefix

CRIT_.

 As critical time dimensions are only calculated internally at the process instance level, the

internal attribute must have the value yes (PPM CTK: enable the corresponding check

box in the Internal column) and the dimtype attribute must have the value PROCESS

(PPM CTK: Select the value PROCESS in the Usage column). Otherwise, an error message

is output when importing the configuration.

Time dimensions from the Early alert system are internal dimensions and are therefore not

displayed in the dimension list in the navigation structure. For this reason, the assignment to

a dimension group is ignored.

8.3.4.2 Special feature for calculation of critical time
attributes

In the calculation rule (calcattr), for the critical time attribute, you must assign the delete

XML attribute the value yes (PPM CTK: Enable the Delete attribute value check box).

PPM CUSTOMIZING

198

Example

Extract from the calculation rule for the Critical goods issue date attribute

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
...
 <calcattr name="AT_CRITICAL_WAUS_DATE"
 type="PROCESS" delete="yes">
...
</keyindicatorconfig>

Use PPM Customizing Toolkit to define, calculate, and register critical time dimensions.

In the Measures and dimensions module, you can use the Dimensions component to

conveniently enter the required definition information. You can create the definitions of the

calculation rules for the critical times in the Calculated attribute types component.

Register critical time dimensions to the preferred process type groups or process types using

the Process tree component on the Process analysis dimensions tab in the Processes

module.

Example

The following example calculates the Critical goods issue date. Instances in which no goods

issue has been posted within four days of the Create delivery function (SAP.LIEF) being

executed are classed as critical, that is, the Post goods issue function (SAP.WAUS) does not

occur in the process instance. The calculation rule for the AT_CRITICAL_WAUS_DATE

attribute calculates the critical time by adding a time span of four days (354600 seconds) to

the time of the earliest occurrence of the Create delivery function.

The calculation is made to the nearest hour (precision="hour" XML attribute for the

CRT_TIME_WAUS dimension). For example, if the earliest reference time (AT_TIME) for the

Create delivery function in a process instance is 13.07.03 20:26:55, based on the above

calculation rule the critical goods issue date, correct to the nearest hour, is thus calculated as

17.07.03 20:00.

The result of a calculated critical time attribute must always be available in a time stamp

format (TIME data type).

This extract from the measure configuration shows the definition of the critical time

dimension CRIT_TIME_WAUS. The attribute and value combination earlyalert="yes"

identifies it as an Early alert system time dimension.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 "KeyindicatorConfiguration.dtd">
<keyindicatorconfig>
 ...
 <calcattr name="AT_CRITICAL_WAUS_DATE"

PPM CUSTOMIZING

199

 type="PROCESS" delete="yes">
 <calculation>
 <if>
 <not>
 <exists>
 <attribute name="AT_OBJNAME_INTERN" nodetype=
 "OT_FUNC" objectname="SAP.WAUS"
 onerror="CONTINUE"/>
 </exists>
 </not>
 <then>
 <addtimespan>
 <min>
 <attribute name="AT_TIME" nodetype="OT_FUNC"
 objectname="SAP.LIEF"
 onerror="EXIT_NO_WARNING"/>
 </min>
 <constant>
 <dataitem value="345600.0">
 4,000
 <datatype name="TIMESPAN">Time span
 </datatype>
 <scale name="DAY" factor="86400.0">Day(s)
 </scale>
 </dataitem>
 </constant>
 </addtimespan>
 </then>
 </if>
 </calculation>
 </calcattr>
 ...
 <timedim name="CRIT_TIME_WAUS" dimtype="PROCESS"
 precision="HOUR" attrname="AT_CRITICAL_WAUS_DATE"
 calculated="TRUE" internal="yes" earlyalert="yes"
 importmode="OPTIONAL">
 <description name="kritischer Warenausgangstermin"
 language="de"/>
 </timedim>
 ...
</keyindicatorconfig>

The Early alert system component of the Instance controlling module in the PPM front-end

checks whether critical goods issue dates have been exceeded. In the example, it is assumed

that the critical dimension CRIT_TIME_WAUS is registered at the Order

processing\Standard order process type.

PPM CUSTOMIZING

200

The current deviation from the critical goods issue date at the time of execution is specified in

the analysis area in the Absolute deviation [Days] column. The execution time for the early

alert check is the current system time. In the example, after executing the early alert check

for the Critical goods issue date dimension, all process instances of the Standard order

process type in which the critical goods issue date has been exceeded are displayed in a

process instance table. For the process instance selected in the illustration the critical goods

issue date has currently been exceeded by 983.843 days. This is the absolute deviation in

days from the critical goods issue date at the current execution time (in the example

10.08.05 15:31).

Alternatively, you can identify critical process instances using the runppmanalytics

command line program using the -earlyalert option (see PPM Operation Guide).

8.3.5 Time range dimensions

Time range dimensions are special time dimensions. They enable users to observe process

states based on a past period (start time to end time).

Three variants exist.

 Due date-related time range dimension, based on the start time

PPM CUSTOMIZING

201

 Due date-related time range dimension, based on the end time

 Interval-based time range dimension

Time range dimensions are defined by the XML element timerangedim.

Example

A time range dimension is configured using the following syntax, for example.

<timerangedim name="RANGEDIM_KEYWORD" reference="END" dimtype="PROCESS">
<startattribute name="AT_START_TIME" calculated="TRUE"/>
<endattribute name="AT_END_TIME" calculated="TRUE"/>
<description name="Display name" language="en"></description>

</timerangedim>

XML tag Description

timerangedim

 name Internal name of the dimension, displayed in

paramset. A table is created in the database under

this name. For the specified name, the guidelines

described in the Table name chapter are applicable.

 dimtype Dimension type: Valid values:

PROCESS (process dimension)

FUNCTION (function dimension, obsolete, only to be

used for compatibility reasons)

OT_FUNC (function dimension)

RELATION (relation dimension)

OT_ORG (organizational dimension)

 reference Defines whether it is a due date-related time range

dimension with a start time (value = "START") or

end time (value="END"), or an interval-based time

range dimension (value="RANGE").

Specification = Optional

Default value = "END"

Changing the type START, END, or RANGE at a later

time is not allowed and prevented by the

configuration import.

 internal Mark as internal dimension with yes. Default value:

no

PPM CUSTOMIZING

202

XML tag Description

 importmode

Output of error messages when calculating

dimension values

OPTIONAL: Calculation errors are not output.

MANDATORY: Calculation errors are output

Default value: OPTIONAL

 dimgroup

Name of the dimension group to which the time

dimension is to be assigned.

Specification: Optional

startattribute/

endattribute

 name Specify the EPC attribute based on which the

dimension value of the start or end time is to be

calculated.

Attribute type = TIME

Specification = Mandatory

 calculated TRUE: Attribute value must be calculated.

Default value: FALSE.

 location Only for dimtype="RELATION"

Valid values: SOURCE (attribute placement on

source reference object of relation)

TARGET (attribute placement on target reference

object of relation)

THIS (default value: attribute is placed at the

relation itself)

Specification: Optional

description

 name Language-specific interface name of the dimension

in the PPM front-end.

PPM CUSTOMIZING

203

XML tag Description

 language Language in which the interface name is displayed

8.3.6 Time of day dimensions

The configuration characteristics of a time of day dimension are summarized in the hourdim

XML element.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <hourdim name="TIMEOFDAY" dimtype="PROCESS"
 attrname="AT_TIME_OF_DAY" tablename="DAYTIME"
 precision="SECOND" calculated="TRUE"
 importmode="OPTIONAL">
 <description language="de" name="Uhrzeit"/>
 <description language="en" name="Time of day"/>
 </hourdim>
 ...
</keyindicatorconfig>

For each step width of a time of day dimension (hour, minute, second), a separate column is

created in the database table for the dimension.

XML tag Description

name Name of the dimension. A table is created in the

database under this name. For the specified name,

the guidelines described in the Table name chapter

are applicable.

dimtype Dimension type: Valid values:

PROCESS (process dimension)

FUNCTION (function dimension, obsolete, only to be

used for compatibility reasons)

OT_FUNC (function dimension)

PPM CUSTOMIZING

204

XML tag Description

RELATION (relation dimension)

OT_ORG (organizational dimension)

location

(optional)

Only for dimtype="RELATION"

Valid values: SOURCE (attribute placement on

source reference object of relation)

TARGET (attribute placement on target reference

object of relation)

THIS (default value: attribute is placed at the relation

itself)

attrname Name of the referenced attribute

precision Most detailed step width of the dimension (HOUR,

MINUTE, SECOND). Default value: HOUR

calculated TRUE: Attribute value must be calculated.

Default value: FALSE

importmode Output of error messages when calculating

dimension values

OPTIONAL: Calculation errors are not output.

MANDATORY: Calculation errors are output

Default value: OPTIONAL

deleteon

compression

The internal aggregation attribute

AT_INTERNAL_COMPRESSCRITERION must be

specified (Configure the internal aggregation

attribute (page 239)).

Only for dimtype="PROCESS"

TRUE: Identical and differing dimension values are

deleted when permanently aggregating using the

command prompt (runppmcompress) (see PPM

Operation Guide) (Change aggregation behavior

(page 239)).

FALSE: When permanently aggregating via

command prompt, identical dimension values are

transferred to the aggregated EPC, while differing

values are deleted.

Default setting: FALSE

PPM CUSTOMIZING

205

8.3.7 Search dimensions

You can use this special dimension type to search for process instances using particular

values for a search attribute. The search dimension acts like a filter on the set of currently

available process instances. As for the other dimension types, the set filter expression can be

edited or removed. Several search dimension filters can be used simultaneously in an

analysis.

A search criterion is specified in the front-end using the Edit filter pop-up menu for the

search dimension. Alternatively, search criteria can be specified in the Process Instance

Search Wizard.

A search criterion consists of a string. Optionally, a placeholder ? or * can be used at the end

of the string. The * symbol stands for any sequence of characters, while the ? symbol stands

for any single character.

The configuration of search dimensions includes the following simplifications compared to

the other dimension types:

 Search dimensions are based exclusively on process attributes.

 Search attributes must be of the TEXT type.

The configuration characteristics of a search dimension are summarized in the searchdim

XML element:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <searchdim name="BELEGNR">
 <description language="de" name="Suche Belegnummer"/>
 <description language="en"
 name="Searching for document number"/>
 <dimitem attrname="AT_SAP_BELEGNR"
 colname="BELEGNR" calculated="TRUE">
 <description language="de" name="Belegnummer"/>
 <description language="en" name="Document number"/>
 </dimitem>
 </searchdim>
 ...
</keyindicatorconfig>

A separate column is created in the database table for each search dimension.

XML tag Description

name Internal name of the dimension. A table is created

in the database under this name. For the specified

name, the guidelines described in the Table name

PPM CUSTOMIZING

206

XML tag Description

chapter are applicable.

description

name

Language-specific interface name of the

dimension in the PPM front-end.

dimitem Definition of a column in the database table. Each

search dimension has a single dimitem element, in

which the dimension is described.

attrname Name of the attribute used as a basis for the

search dimension

colname Name of the data column in the info cube. If this is

not specified, the dimension name is used.

For the specified name, the guidelines described in

the Table name chapter apply.

calculated TRUE: Attribute value must be calculated.

Default value: FALSE

compression

value

(optional

sub-element for

dimitem)

The internal aggregation attribute

AT_INTERNAL_COMPRESSCRITERION must be

specified (Configure the internal aggregation

attribute (page 239)).

Only for dimtype="PROCESS"

Identical and differing dimension values are

deleted when permanently aggregating using the

command prompt (runppmcompress) (see PPM

Operation Guide) and they are replaced by the

specified aggregation value (Change aggregation

behavior (page 239)).

Search dimensions are written to the info cube for the process type group. If you are using

several search dimensions in a process type group, you need to give the data columns

different names.

PPM CUSTOMIZING

207

8.3.8 Variant dimension

With PPM 10.1 the new VARIANTDIM dimension type has been introduced.

Variants classify process instances according to their structure. The relevant structure is the

sequence of functions in a process instance. Variant has two dimension levels, Combined

variant (rough step width) and Precise variant (refined step width), and the Name as

dimension value.

More basic information about variants, a list with affected functionalities, and how to add the

variant feature to PPM can be found in the documentation PPM Customizing Toolkit.

8.3.8.1 Attribute configuration

The following attribute types are defined as attributes for the VARIANT dimension type. They

are of type Text and are part of the attribute configuration.

ATTRIBUTE TYPES

<attributedefinition key="AT_INTERNAL_FUNCTION_FLOW_VARIANT" type="TEXT"

group="AG_INTERNAL" />

<attributedefinition key="AT_INTERNAL_PRECISE_VARIANT" type="TEXT"

group="AG_INTERNAL" />

ATTRIBUTE NAMES

<attribute key="AT_INTERNAL_FUNCTION_FLOW_VARIANT" name="Internal combined

variant" />

<attribute key="AT_INTERNAL_PRECISE_VARIANT" name="Internal precise variant" />

Because of a specific semantic it is not recommended to import values or to define an

attribute calculator. See chapter Usage of variant attributes during import (page 209).

8.3.8.2 Measure configuration - dimension type

The variantdim element is used to define the variant dimension. It has just three attributes

and nested leveldesc elements for configuring the attributes used to feed the two levels.

Attributes of the variantdim element are:

XML tag Description

name keyword as used in paramset (required)

PPM CUSTOMIZING

208

XML tag Description

comment comment for dimension (optional)

dimgroup name of the group this dimension is assigned to

(optional)

Each dimension level (leveldesc) has exactly one dimitem as value and a description is not

allowed for both dimension level. Only the attrname element is required for the dimitem

element.

XML tag Description

attrname Name of the referenced attribute, containing the

dimension data. Only the TEXT data type is permitted.

Typically variant dimension is defined as follows.

<variantdim name="D_EPC_VARIANT">

<description language="en" name="Variant" />

 <description language="de" name="Variante" />

 <leveldesc>

 <dimitem attrname="AT_INTERNAL_FUNCTION_FLOW_VARIANT">

 <description language="en" name="Combined variant" />

 <description language="de" name="Kombinierte Variante" />

 </dimitem>

 </leveldesc>

 <leveldesc>

 <dimitem attrname="AT_INTERNAL_PRECISE_VARIANT">

 <description language="en" name="Precise variant" />

 <description language="de" name="Präzise Variante" />

 </dimitem>

 </leveldesc>

</variantdim>

PPM CUSTOMIZING

209

8.3.8.3 Process tree configuration

Variant dimensions can be assigned to process tree nodes similar to all other dimension types

by using the <usedim> element.

<usedim name="D_EPC_VARIANT" />

Optionally, the <usedim> assignment can contain a default refinement. If it is not the case, the

coarsest level is used as refinement similar to all other Text dimension types.

8.3.8.4 Usage of variant attributes during import

The use of the variant attributes during merge and attribute mapping is not forbidden but

strongly discouraged. The values of variant process attributes are overwritten by the variant

calculation, which is only happening after all other calculations have already been processed.

So neither one can use the results of the variant calculation nor the fully processed EPCs

contain the values set outside the variant calculation.

There is a special danger in filling the dimension attributes by calculation rules or through

mapping: When you do that while the variant dimension is not registered at the process type

of the EPC, these values will not be overwritten. When you then register the dimension,

re-initialize the analysis server, and do not recalculate the EPC, it will contain invalid

dimension IDs, for example, a variant corresponding to the values would be shown on the GUI,

but it would not correspond to any real variant in the database. In order to rectify the

situation, you can runppmimport with –keyindicator new. (Using the command line

parameter –ps to specify a suitable query, you can restrict the recalculation to the EPCs of

the process type.)

Detailed information on how to use runppmimport can be found in the PPM Operation Guide.

8.3.9 Shared function dimension

By default, shared functions are transferred to the system through a one-time import of a

shared fragment. Applying the shared fragment rules merges the shared functions that are

contained in the imported shared fragments with the normal process instance fragments. All

objects of the shared fragment are copied to the fragment instance. This automatically

ensures the uniqueness of a shared function and you can use the function ID of a shared

function to differentiate between shared functions.

If you directly import shared functions as normal fragment instances using event format, a

unique ID is created for each imported function. The function ID cannot be used as

characteristic of a shared function. You can, however, define a shared function dimension

PPM CUSTOMIZING

210

where identical dimension values combine functions into shared functions. Dimension values

not specified are not included.

A shared function dimension has the following properties:

 Only one shared function can be defined per client.

 The shared function dimension must be registered at the process tree root.

 The shared function dimension is invisible on the interface.

 The shared function dimension cannot be customized using PPM CTK.

Example

The following example supplies excerpts from measure and process tree configuration files.

For functions with an AT_IS_SHARED_FUNCTION attribute having the value true, the

calculation rule of the AT_SHARED_FUNCTION_ID function attribute used for the shared

function dimension concatenates the internal function name with the time stamp of the

function execution.

keyindicator.xml file extract

...
<calcattr name="AT_SHARED_FUNCTION_ID" type="OT_FUNC" delete="yes">
 <calculation>
 <if>
 <and mode="PPM4">
 <exists mode="PPM4">
 <filteredattribute name="AT_IS_SHARED_FUNCTION"
 nodetype="OT_FUNC" objectname="this"
 onerror="CONTINUE" filter="EARLY" />
 </exists>
 <eq mode="PPM4">
 <filteredattribute name="AT_IS_SHARED_FUNCTION"
 nodetype="OT_FUNC" objectname="this"
 onerror="CONTINUE" filter="EARLY" />
 <constant>
 <dataitem value="TRUE">
 TRUE
 <datatype
 name="BOOLEAN">Logical value</datatype>
 </dataitem>
 </constant>
 </eq>
 </and>
 <then>
 <concat mode="PPM4">
 <set mode="PPM4">
 <filteredattribute name="AT_OBJNAME_INTERN"
 nodetype="OT_FUNC" objectname="this"
 onerror="EXIT_WARNING" filter="EARLY" />
 <convert datatype="TEXT">
 <filteredattribute name="AT_END_TIME"
 nodetype="OT_FUNC" objectname="this"
 onerror="EXIT_WARNING" filter="EARLY" />

PPM CUSTOMIZING

211

 </convert>
 </set>
 </concat>
 </then>
 </if>
 </calculation>
</calcattr>
...
<sharedfunctiondim name="SHARED_FUNCTION">
 <description name="Shared Function" language="de" />
 <description name="Shared Function" language="en" />
 <dimitem attrname="AT_SHARED_FUNCTION_ID"
 colname="SHARED_FUNCTION" calculated="TRUE">
 <description language="de" name="SHARED_FUNCTION" />
 <description language="en" name="SHARED_FUNCTION" />
 </dimitem>
</sharedfunctiondim>
...

processtree.xml file extract

...
<usesfdim name="SHARED_FUNCTTION" />
<processtypegroup name="Standard order"
 dbtablename="CUBE1">
 <processtype name="Order processing" autovisible="FALSE" />
</processtypegroup>
...

8.3.10 Using organizational units as dimensions

Using an organizational unit as a dimension does not represent a separate dimension type.

Specifying a special calculation rule copies the name of the organizational unit to the relevant

functions of the process instance as an attribute.

Example

The following file extracts from the measure configuration illustrate the creation of a

dimension from organizational units:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE keyindicatorconfig SYSTEM
 'KeyindicatorConfiguration.dtd'>
<keyindicatorconfig>
 ...
 <calcattr name="AT_ORGUNIT" type="OT_FUNC">
 <calcclass name= "com.idsscheer.ppm.server.
 keyindicator.attributecalculator
 .ZAttributeCalculatorOriginator"/>
 </calcattr>
 ...
 <oneleveldim name="ORGUNIT" dimtype="FUNCTION"
 internal="no">

PPM CUSTOMIZING

212

 <description language="de" name="Processor"/>
 <leveldesc>
 <dimitem attrname="AT_ORGUNIT" colname="FIRST_ID"
 calculated="TRUE">
 <description language="de" name="Processor"/>
 </dimitem>
 </leveldesc>
 </oneleveldim>
 ...
</keyindicatorconfig>

The AT_ORGUNIT attribute is created for each function instance and is assigned the name of

the organizational unit as its value. This attribute is used to create the one-level function

dimension ORGUNIT.

The AT_ORGUNIT attribute is one of the default attributes in the PPM system and does not

need to be defined.

8.4 Definition of data access dimensions

By configuring data access dimensions, you can assign data access privileges that, in addition

to process access privileges, enable you to control access to PPM data.

Data access privileges are assigned to user groups and are inherited by the users assigned to

that group. The administrator (PPM user with User management function privilege) defines

the data access privileges by specifying particular filters on dimensions that cannot be edited

by the user. These dimensions are called data access dimensions and specified in the

configuration of the process tree through the roledim XML element. The roledim element

must reference an already configured text dimension (chapter Text dimensions (page 181))

that must be registered at the root of the process tree. This ensures that data access

dimensions can be used throughout the entire process tree. Only one- and two-level text

dimensions are allowed for the roledim element.

If you do not want a data access dimension to be displayed in the PPM user interface, specify

the internal="yes" XML attribute in the definition of the dimension.

Example

In the process tree configuration file, the Sold-to party and Sales organizationdata access

dimensions are specified as follows:

 ...
 <roledim name="VKORG"/>
 <roledim name="PRINCIPAL" refinement="BY_LEVEL1"/>
 ...
 <usedim name="VKORG"/>
 <usedim name="PRINCIPAL" refinement="BY_LEVEL1"
 scale="LEVEL1SCALE"/>

PPM CUSTOMIZING

213

 ...

The two dimensions are available as data access dimensions in privilege management.

PPM users inherit the data access privileges for all user groups they are assigned to. The data

access privileges are linked as follows:

 Different data access privileges for the same dimensions are linked by an OR rule.

 Data access privileges for different dimensions are linked by an AND rule. If the user is

assigned to a user group that has the data access privilege None, None is ignored.

 If a user belongs to at least one user group that has the data access privilege All, this data

access privilege is not restricted by the data access privileges of other groups to which

the user belongs.

A user who is not assigned to any user groups has no data access privileges.

SPECIAL CASE

To link data access privileges for different dimensions with an OR rule, combine the values of

these dimensions into a new, invisible dimension using the attribute calculator and specify

the calculated dimension as the data access dimension.

Example

You want to assign data access privileges for the two dimensions Location 1 and Location

2in such a way that a user can view data if the Munich plant appears in one of the Location 1

or Location 2 dimensions.

All dimension values for the two dimensions are combined in the calculated dimension

Location 3. This is specified as a data access dimension in the process tree configuration.

Location 1 Location 2 Location 3

Munich Berlin Munich_Berlin

Stuttgart Leipzig Stuttgart_Leipzig

Hamburg Munich Hamburg_Munich

Saarbrücken Hamburg Saarbrücken_Hamburg

Using the filter expression *Munich* creates the relevant data access privilege.

8.4.1 Using data access dimensions

A PPM user who logs in using restricting data access privileges can only view data that is

released for him. From an overall system perspective, the use of data access dimensions has

the following effect:

PPM CUSTOMIZING

214

PROCESS ACCESS PRIVILEGES

Process access privileges specified for a user are evaluated independent on data access

privileges. Within the process types released for him, a user can only analyze the data

corresponding to his data access privileges.

DATA ANALYSIS

Every analysis inquiry is automatically supplemented by the filter for the access dimensions

applicable for the user logged in. The filters for multiple data access dimensions are linked by

an AND rule.

FILTER DIALOGS

If the data access privileges for a user are restricted, in the filter dialog for the corresponding

data access dimension, only the dimension values released for that user are displayed for

selection.

PLANNED VALUES

A user can only create planned values for data for which he has data access privileges. As

with the data analysis, the filter for the access dimensions applicable to the user logged in is

automatically added to the planned value definition.

If planned values are defined for which the data access dimension filter, valid for the user

logged in, is only part of the filter valid for the planned value, the planned value is displayed

but cannot be edited by the user.

AGGREGATION AND DELETING

A user can only aggregate and delete the data for which he has data access privileges. As

with the data analysis, the filter for the access dimensions applicable to the user logged in is

automatically used.

For persistent aggregation, iteration automatically uses the data access dimension so that

the assignment of the aggregated process instances to the data access dimensions is

retained.

DATA IMPORT

Data can be imported with no restrictions. If a user has the data import privilege, he can also

import data for which he will not actually have access privileges after completing the import

operation.

PPM CUSTOMIZING

215

PROCESS INSTANCE-INDEPENDENT DATA

The behavior of data access privileges applies to process instance-independent measures

and dimensions with no restrictions. In this case, you can use any dimensions of the imported

process instance-independent data as data access dimensions.

8.5 Process tree definition

The definition of the process tree is specified in an XML file. This file has the following

structure:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="...">
<!-- ROOT - Definition -->
 <processparamset>
 <paramset>
 ...
 </paramset>
 </processparamset>
 <functionparamset>
 <paramset>
 ...
 </paramset>
 </functionparamset>
<!-- Standard measures -->
 <useki ... >
 <usepidim ... />
 </useki>
<!-- Default dimensions -->
 <usedim ... "/>
<!-- Start of process tree definition -->
 <processtypegroup name="Auftragsabwicklung">
 <processparamset>
 ...
 </processparamset>
 <functionparamset>
 ...
 </functionparamset>
 <useki ... >
 <usepidim ... />
 </useki>
 <usedim ... "/>
 <processtype name="Other orders">
 </processtype>
 ...
 </processtypegroup>
 <processtypegroup name="...">
 <processparamset>
 ...
 </processparamset>

PPM CUSTOMIZING

216

 <useki ... />
 <usedim ... "/>
 <processtype name="..." autovisible="...">
 </processtype>
 ...
 </processtypegroup>
 ...
</processtree>

XML element Description

processtree Name of process tree. Displayed as the root.

The definition of the process tree contains the

following details:

- Default query for processes and functions

- Measures and dimensions available in the

entire tree

- At least one process type group

processparamset Specifies one default query each (default

paramset) for the root of the process tree, each

process type group and each process type. The

default query is shown when starting the

analysis component of the PPM front-end. The

default query can be called up at any time using

the Display default query pop-up menu in the

process tree.

functionparamset Specifies a default query (default paramset) for

each function type.

paramset Describes the presentation of the default

queries as an analysis in XML notation.

useki Assigns the specified measure to the relevant

elements of the process tree (processtree,

processtypegroup, processtype XML

elements).

usedim Assigns the specified dimension to the relevant

elements of the process tree (processtree,

processtypegroup, processtype XML

elements).

PPM CUSTOMIZING

217

XML element Description

userelki Assigns the specified relation measure to the

relevant elements of the process tree

(processtree, processtypegroup,

processtype XML elements).

usereldim Assigns the specified relation dimension to the

relevant elements of the process tree

(processtree, processtypegroup,

processtype XML elements).

usepidim

(optional)

Registers the specified dimension to the same

process tree element to which the process

instance-independent measure specified by

useki is assigned. This is only necessary if the

dimension for the process tree element is not

already available due to being assigned or

passed on.

processtypegroup Defines a process type group. The definition of a

process type group contains the following

information:

- Name of process type group

- Default query for processes and functions in

the process type group

- Measures and dimensions assigned to the

process type group in addition to the global

measures and dimensions

- At least one process type

PPM CUSTOMIZING

218

XML element Description

processtype Defines a process type. The definition of a

process type contains the following details:

- Name of the process type

- Default query for processes and functions in

the process type

- Measures and dimensions that are assigned to

the process type in addition to those from the

process type group

The optional autovisible="TRUE" gives newly

created PPM users automatic access privileges

for this process type. The default setting is

FALSE, that is, newly created PPM users initially

have no access privileges for this process type.

The names of process types and process type groups in the process tree must be unique and

correspond to the names used in the process type definition. They are therefore specified in

only one language, that is, the language of the source system.

8.5.1 Registration of measures and dimensions at the PPM
system

The measures and dimensions defined in the client-specific measure configuration

(KeyindicatorConfiguration.xml) must be registered in the process tree configuration

(ProcessTree.xml) to be known to the PPM system. Then they are available after a

successful configuration import for analyses and calculations in the PPM interface.

Measures are assigned to individual function types, individual process types, individual

process type groups, or all process type groups (global measures and dimensions).

Measures and dimensions for a process type group are automatically passed on to

subordinate process types. If the process tree root is selected, only the measures and

dimensions that are assigned to all process type groups are displayed.

8.5.1.1 Register measure

A measure is registered at the PPM system in the process tree configuration file using the

following XML element:

PPM CUSTOMIZING

219

<useki name="..." assessment="..." scale="..." refinement="..."/>

XML tag Description

name Internal name of the measure. The measure itself is

defined in the kidef XML element in the measure

configuration.

assessment Assessment of a measure. POS specifies that high

measure values are assessed positively. NEG specifies

that low measure values are assessed positively.

scale

(optional)

Default scaling of the measure. A unit of the attribute

data type on which the measure is based (for example,

unit HOUR when using the TIMESPAN data type). The

scaling can be changed in the analysis.

If no scaling is set, PPM automatically determines a

value for optimum representation.

refinement

(optional)

Default step size for the measure when used as an

iteration. The value must be specified with a unit (for

example, 2.5 PER_DAY). The step size can be changed

using the measure pop-up menu in the analysis.

8.5.1.1.1 Register relation measure

A relation measure is registered at the PPM system in the process tree configuration file using

the following XML element:

<userelki name="..." relname="..." assessment="..." scale="..."
refinement="..."/>

If necessary, the same relation measure is registered individually for each relation.

XML tag Description

name Internal name of the relation measure. The measure

itself is defined in the kidef XML element in the

measure configuration.

relname Internal name of the relation for which the relation

measure is to be available

assessment Chapter Register measure (page 218)

PPM CUSTOMIZING

220

XML tag Description

scale

(optional)

Chapter Register measure (page 218)

refinement

(optional)

Chapter Register measure (page 218)

Example (extract from process tree configuration):
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="Processes">
 <processparamset>
 ...
 </processparamset>
 <functionparamset>
 ...
 </functionparamset>
 ...
 <processtypegroup name="Customer Services"
 dbtablename="CUBE6">
 <processparamset>
 ...
 </processparamset>
 <userelki name="RNUMA" relname="REL_CARRY_OUT"
 assessment="POS"/>
 <userelki name="RNUMA" relname="REL_PING_PONG"
 assessment="POS"/>
 ...
 <processtype name="..." autovisible="TRUE">
 <typifierrule function="..." priority="..."/>
 ...
 <userelki name="..." relname="..."/>
 ...
 </processtype>
 ...
 </processtypegroup>
 ...
</processtree>

8.5.1.1.2 Register measures and dimensions of process
instance-independent data series

Process instance-independent measures and referenced dimensions of process

instance-independent data series must be registered at the process tree before they can be

used in analyses.

PPM CUSTOMIZING

221

Like process instance-dependent measures, process instance-independent measures are

registered at the process tree by the useki XML element.

A process instance-independent measure can be registered at multiple process type groups

or process types.

Example

The process instance-independent measure OVERHEAD_COSTS is registered to the

Shipping process type group in the process tree. The measure base unit is EUR.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="Processes">
 ...
 <processtypegroup name="Shipping">
 ...
 <useki name="OVERHEAD_COSTS" scale="EUR" assessment="NEG"/>
 ...
 </processtypegroup>
 ...
</processtree>

8.5.1.1.3 Special case: Register referenced dimensions

If a process instance-independent measure relates to dimensions that are not available at the

same process tree element as the process instance-independent measure, the dimensions

must be registered using the usepidim XML element within the useki element at the process

tree element of the process instance-independent measure.

Example (previous example continued):
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="Processes">
 ...
 <processtypegroup name="Shipping">
 ...
 <useki name="OVERHEAD_COSTS" scale="EUR" assessment="NEG">
 <usepidim name="PRINCIPAL"/>
 </useki>
 <usedim name="D_COLOR" />
 <usedim name="D_EQUIPMENT" />
 <usedim name="D_PRODUCT" />
 <processtype name="...">
 ...
 </processtype>
 </processtypegroup>
 ...

PPM CUSTOMIZING

222

</processtree>

The dimension principal (PRINCIPAL) is registered together with the process

instance-independent measure OVERHEAD_COSTS at the Shipping process type group, at

which the dimension itself is not registered via the usedim element.

The dimension referenced by the process instance-independent data series and thus

registered serves only analysis purposes pertaining to the process instance-independent

measure OVERHEAD_COSTS.

Dimensions registered using the usepidim XML element cannot be used for measure

calculation at process instance level.

8.5.1.2 Register dimension

A dimension is registered at the PPM system in the process tree configuration file using the

following XML element:

<usedim name="..." scale="..." refinement="..." variance="..."/>

XML tag Description

name Internal name of the dimension. The dimension itself is

defined in one of the oneleveldim, twoleveldim,

floatingdim, timedim, hourdim or searchdim XML

elements in the measure configuration.

scale

(optional)

Default scaling of the dimension. The scaling can be

changed using the dimension pop-up menu in the

analysis.

If no scaling is set, PPM automatically determines a

value for optimum representation.

PPM CUSTOMIZING

223

XML tag Description

refinement

(optional)

Default step size of the dimension. The possible options

depend on the attribute data type on which the

dimension is based:

- Numerical attribute: Value with unit

- Alphanumeric attribute (also data type specific):

 - Text: No entries possible. The iteration steps are

 stipulated by the different attribute values.

 - Text pair BY_LEVEL1, BY_LEVEL2 (rough,

detailed): For each dimension level, the iteration steps

are stipulated by the attribute values.

 - Time: BY_YEAR, BY_QUARTER, BY_MONTH,

 BY_WEEK, BY_DAY, BY_HOUR, BY_MINUTE

If no scaling is set, PPM automatically determines a

value for optimum representation.

Variance

(optional)

Has been defined for future expansions and is not

currently in use.

8.5.1.2.1 Register reference dimension

The reference dimensions used to define relations are registered at the process tree root so

that they are available in all process type groups and process types. They are registered

separately for each relation using the usereldim XML element.

XML tag Description

name Internal name of the reference dimension. The

dimension itself is defined in one of the oneleveldim or

twoleveldim XML elements in the measure

configuration.

relname Internal name of the relation (see chapter on Definition

of relations (page 228)) for which the reference

dimension is to be available

scale

(optional)

Chapter Register dimension (page 222)

PPM CUSTOMIZING

224

XML tag Description

refinement

(optional)

Chapter Register dimension (page 222)

Variance

(optional)

Chapter Register dimension (page 222)

Example (extract from process tree configuration):
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="Processes">
 <processparamset>
 ...
 </processparamset>
 <functionparamset>
 ...
 </functionparamset>
 <roledim name="..."/>
 ...
 <useki name="..." assessment="..."/>
 ...
 <usedim name="..." refinement="..." scale="..."/>
 ...
 <usereldim name="FROMORG" relname="REL_CARRY_OUT"/>
 <usereldim name="FUNCTION" relname="REL_CARRY_OUT"/>
 <usereldim name="FROMORG"
 relname="REL_WORKS_TOGETHER"/>
 <usereldim name="TOORG" relname="REL_WORKS_TOGETHER"/>
 <usereldim name="FROMORG" relname="REL_PING_PONG"/>
 <usereldim name="TOORG" relname="REL_PING_PONG"/>
 ...
</processtree>

8.5.1.2.2 Register relation dimension

Relation dimensions are registered in the same way as reference dimensions (see chapter

Register reference dimension (page 223)) except that relation dimensions can be registered

at different process tree elements (process tree root, process type groups, or process types).

For the registration at superordinate process tree elements, the same inheritance

mechanisms apply as described in the introduction to the process tree configuration (see

chapter Registration of measures and dimensions at the PPM system (page 218)).

If necessary, the same relation dimension is registered individually at the corresponding

process tree element for each relation for which it is to be available.

PPM CUSTOMIZING

225

Example (extract from process tree configuration):
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE processtree SYSTEM
 "KeyindicatorProcesstree.dtd">
<processtree name="Processes">
 <processparamset>
 ...
 </processparamset>
 <functionparamset>
 ...
 </functionparamset>
 ...
 <processtypegroup name="Customer Services"
 dbtablename="CUBE6">
 <processparamset>
 ...
 </processparamset>
 <usereldim name="SOURCEFUNC"
 relname ="REL_WORKS_TOGETHER"/>
 <usereldim name="TARGETFUNC"
 relname ="REL_WORKS_TOGETHER"/>
 ...
 <processtype name="..." autovisible="TRUE">
 <typifierrule function="..." priority="..."/>
 ...
 <usereldim name="..." relname="..."/>
 ...
 </processtype>
 ...
 </processtypegroup>
 ...
</processtree>

8.5.2 Automatic process tree expansion

If process instances whose process type and process type group do not exist in the process

tree are edited during data import, the process tree is automatically expanded to include the

missing elements. A distinction is made between the following cases:

 New process type and new process type group

The new process type group and the new process type are created under the root of the

process tree. They inherit all measures and dimensions from the tree root.

 New process type in existing process type group

The new process type is created under the existing process type group. The process type

inherits all measures and dimensions from the process type group.

PPM CUSTOMIZING

226

Warning

An individual process type cannot be assigned to multiple process type groups. In such a

case, the measures and dimensions assigned to this process type in the new group would not

be defined. This can occur if you transfer process typification information directly from the

source system to the AT_PROCTYPEGROUP and AT_PROCTYPE process instance

attributes.

Automatically created process type groups and process types inherit the measures and

dimensions assigned to the higher-level elements. They cannot be assigned any further

measures and dimensions.

8.5.3 Manual process tree expansion

During operation of your PPM system, the continuous importing of data can result in

automatic expansion of the existing process tree (see chapter Automatic process tree

expansion (page 225)).

If you want to expand the process tree configuration manually, you should first back up the

current process tree with the automatically created expansions in a configuration file.

To do this, export the current process tree to a local XML file using runppmconfig (see PPM

Operation Guide).

Specify the relevant expansions in the XML file exported.

Then import the file with the expansions back into the PPM system using runppmconfig.

8.5.4 Definition of process tree in multi-byte character sets

The following extract from the process tree configuration file shows an example of the

definition options for process type groups or process types when using a multi-byte

character set:

DEFINITION OF PROCESS TYPE GROUP AND PROCESS TYPE WITH DEFAULT
QUERY:

...
 <processtypegroup name="διεκπεραίωση εντολής"
 dbtablename="CUBE10">
 <processparamset>
 ...
 </processparamset>
 <functionparamset>
 ...
 </functionparamset>

PPM CUSTOMIZING

227

 <processtype name="πώληση τοις μετρητοίς"
 autovisible="FALSE">
 <processparamset>
 <paramset>
 ...
 <kiquery showzero="auto">
 <keyindicator>
 <criterion name="PNUM"> Number of processes
 </criterion>
 </keyindicator>
 <iteration nullvalue="no">
 <criterion name="PROCESSTYPE">Process type
 </criterion>
 <refinement name="BY_LEVEL1">Rough
 </refinement>
 </iteration>
 <filter>
 <criterion name="PROCESSTYPE">Process type
 </criterion>
 <filteritem operator="or">
 <dataitem>
 διεκπεραίωση εντολής\πώληση
 τοις μετρητοίς
 <datatype name="TEXTPAIR">
 Text pair
 </datatype>
 <scale name="LEVEL2SCALE"
 factor="2.0">
 Detailed
 </scale>
 </dataitem>
 </filteritem>
 </filter>
 </kiquery>
 ...
 </paramset>
 </processparamset>
 <functionparamset>
 <paramset>
 ...
 <kiquery showzero="auto">
 ...
 <filter>
 <criterion name="PROCESSTYPE">Process type
 </criterion>
 <filteritem operator="or">
 <dataitem>
 διεκπεραίωση εντολής\πώληση
 τοις μετρητοίς
 <datatype name="TEXTPAIR">Text pair
 </datatype>
 <scale name="LEVEL2SCALE"
 factor="2.0">
 Detailed
 </scale>
 </dataitem>

PPM CUSTOMIZING

228

 </filteritem>
 </filter>
 ...
 </kiquery>
 </paramset>
 </functionparamset>
 </processtype>
 </processtypegroup>
...

In the example, the process type group διεκπεραίωση εντολής is defined and assigned the

process type πώληση τοις μετρητοίς.

8.6 Relations

In the Interaction analysis module, relations between different objects can be analyzed at

process instance level.

A relation is a link between two object instances in a process instance.

Organizational units and functions can be used as the reference objects. The calculator (see

chapter on Definition of relation calculations (page 231)) of a relation determines the object

instances between which the relation exists.

These relations (relation occurrences) can be thought of as an invisible connection between

the object instances in the process instance. Specific measures and dimensions can be

defined for each relation (see Definition of relation measures (page 235) and Definition of

relation and organizational dimensions (page 237) chapters) and will then be calculated for

each relation occurrence at process instance level.

Example configurations relating to Interaction analysis are located in your PPM Customizing

Toolkit installation in the directory <PPM installation

directory\ppm\server\bin\agentLocalRepo\.unpacked\<installation_time>_ppm-clien

t-run-prod-<version>-runnable.zip\ppm\ctk\ctk\examples\custom\organalysis.

8.6.1 Definition of relations

Relations are the basis for the definition of relation measures and relation dimensions. They

are defined in the measure configuration.

A relation exists between a source reference dimension and a target reference dimension

(see Reference dimensions (page 230) chapter) and has a name and a relation calculator

assigned using the calcrel XML element.

PPM CUSTOMIZING

229

XML tag Description

relation Relation definition

name Unique key word for the relation for internal

referencing

id Unique integer between 0 and 999 under which the

corresponding database table is created

description Language-specific user interface name. This must be

specified in the default language.

sourcedim Source reference dimension. Only one or two-level

dimensions of OT_FUNC or OT_ORG type (see

chapter on Reference dimensions (page 230))

targetdim Target reference dimension. Only one or two-level

dimensions of OT_FUNC or OT_ORG type (see

chapter on Reference dimensions (page 230))

refki At least one measure of the RELATION type

refdim

(optional)

Dimension of RELATION or PROCESS type.

Each referenced dimension can only be evaluated in

the context of the specified relation.

Example

(extract from Keyindicator.xml)

...
<relation name="REL_CARRY_OUT" id="0">
 <description name="executes" language="de" />
 <sourcedim name="FROMORG" />
 <targetdim name="FUNCTION" />
 <refki name="REL_CO_CORATE" />
 <refki name="RNUMA" />
 <refki name="REL_CO_DLZ" />
 <refki name="ORGCAPA" />
 <refki name="REL_CO_COST" />
 <refdim name="REL_CO_TIME" />
</relation>
...

Warning

Do not use the same dimension as the source and target reference dimension of a relation.

This leads to the measure configuration import being aborted with a corresponding error

message.

You cannot reference any cardinality measures in the refki XML element.

PPM CUSTOMIZING

230

8.6.1.1 Reference dimensions

In PPM a relation always exists between a source object and a target object, known as

reference objects. To specify the reference objects of a relation, you must define reference

dimensions (sourcedim, targetdim) for these objects in the measure configuration. For each

relation, you define a source reference dimension and a target reference dimension of the

TEXT type (one, two, or n-level dimensions). The individual dimension values are used to

reference particular organizational units or functions. The required attribute mapping is

carried out in the configuration file for the organizational units and/or in the mapping

information file.

The dimtype XML attribute is used to specify the object type for which the reference

dimension is defined. Valid values are OT_FUNC for function dimensions and OT_ORG for

organizational dimensions.

Example

(extract from Keyindicator.xml)

...
<twoleveldim name="FROMORG" dimtype="OT_ORG"
 dimgroup="DIM_GROUP_CRITERIA"
 internal="no" importmode="OPTIONAL">
 <description language="de"
 name="Organisationseinheit (Start)"/>
 <leveldesc>
 <dimitem attrname="AT_ORGGRP" colname="GRP"
 calculated="FALSE">
 <description language="de" name="Group" />
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_OBJNAME"
 colname="NAME" calculated="FALSE">
 <description language="de" name="Name" />
 </dimitem>
 </leveldesc>
</twoleveldim>
...

Warning

You need to register the source and target reference dimensions used at the process tree

root in the process tree configuration (see chapter Register reference dimension (page

223)). Otherwise, an error message is output when importing the process tree configuration.

PPM CUSTOMIZING

231

8.6.2 Definition of relation calculations

The defined relations are created using relation calculators in the process instance. For each

relation, the corresponding calculation class is specified in the calcrel XML element in the

measure configuration. By default, these are the following four classes (the fixed part of the

class name is omitted in each case):

 ZRelationCalculatorCarriesOut for the executes relation

In the corresponding process instances, that is, those for whose process type or process type

group the relevant relation measures or relation dimensions are registered, this creates a

relation from each instance of an organizational unit to the associated function instance,

which is assigned to the organizational unit by the executes connection

(CXN_UNDIRECTED).

Example

In the process instance, the relation calculator creates the executes relation (gray arrows)

between each organizational unit and function. The organizational unit is the source object

and the function the target object.

 ZRelationCalculatorWorksTogether for the co-operates with with (without gaps)

relation

In the corresponding process instances, this creates a relation from the instance of an

organizational unit to each instance of the organizational unit that executes the directly

succeeding function instance. These can be identical organizational units, that is,

organizational units with the same name (AT_OBJNAME). By selecting appropriate filters,

this relation can be used to evaluate organizational structures within an organizational unit.

PPM CUSTOMIZING

232

Example

In both process instances, the relation calculator creates the cooperates with relation (gray

arrows) between each organizational unit and the organizational unit that executes the

directly succeeding function. For example, the graphic shows that organizational unit D

cooperates with organizational units D, E, and F.

 ZRelationCalculatorWorksTogetherLongDistance for the relation cooperates with (with

gaps); the function instances including the organizational units do not have to be

sequential, unlike the previously described relation cooperates with (without gaps).

 ZRelationCalculatorOrgBreak for the Organizational break relation

Behaves in exactly the same way as the co-operates with relation except that the relation is

only created between different organizational units, that is, organizational units with different

names (AT_OBJNAME). This relation is used to evaluate organizational structures between

different organizational units.

PPM CUSTOMIZING

233

Example

In the process instance, the relation calculator creates the Organizational break relation

(gray arrows) between two organizational units, whenever execution of the directly

succeeding function results in an organizational change.

 ZRelationCalculatorPingPong for the Ping pong relation

In the corresponding process instances, this creates a relation between two organizational

units with different names, which switch directly at least once in the subsequent process

flow without any additional organizational units being involved. This can involve the execution

of different functions or the same function (AT_OBJNAME).

PPM CUSTOMIZING

234

Example

In the two process instances, the relation calculator creates the Ping pong relation (gray

arrows) between organizational unit A and organizational unit B.

Example (definition of a relation calculator)

(extract from Keyindicator.xml)

...
<calcrel name="REL_CARRY_OUT">
 <calcclass name="com.idsscheer.ppm.server.keyindicator.
 relation.calculator.ZRelationCalculatorCarriesOut"/>
 <calcparam key="..." value="..."/>
</calcrel>
...

XML tag Description

calcrel Relation calculator

name Internal name of the relation to be calculated

PPM CUSTOMIZING

235

XML tag Description

calcclass Name of the calculation class. Any optional

calcparam XML elements transfer calculation

parameters when the class is called up (see chapter

on Definition of attribute calculations (page 51)).

depends

(optional)

Name and type of an attribute (PROCESS,

OT_FUNC, OT_EVT, OT_ORG, or RELATION),

which must exist for the calculation to be executed.

If the specified attribute is a calculated attribute,

this is calculated first. The relname attribute

specifies the relation on which there is a

dependency (only for type="RELATION").

Several depends elements can be specified

simultaneously.

Not to be used in conjunction with dependsrel.

dependsrel

(optional)

Name of the relation of which there is a

dependency. Several dependsrel elements can be

specified simultaneously. Not to be used in

conjunction with depends.

8.6.3 Definition of relation measures

Relation measures are assigned to a particular relation in the measure configuration using the

refki XML element. Relation measures can only be evaluated in the Interaction analysis

module with the corresponding relation. Relation measures are indicated by yellow symbols in

the user interface.

Relation measures are configured using the following XML elements and XML attributes in the

measure configuration (see chapter on Definition of standard measures (page 152)):

XML tag Description

name Unique key word for measure. Referenced in the refki

XML element in the relation definition (see chapter on

Definition of relations (page 228)). Recommended

prefix: REL_

type RELATION (relation measure)

PPM CUSTOMIZING

236

XML tag Description

location

(optional)

Only for type="RELATION"

Valid values: SOURCE (the attribute from which the

measure value is taken, search performed on the

source reference object of the relation.)

TARGET (the attribute from which the measure value

is taken, search performed on the target reference

object of the relation.)

THIS (default value: The search for the attribute from

which the measure value is taken is performed on the

relation connection itself)

Example (extracts from measure configuration)

Measure definition:

...
<kidef name="REL_CO_DLZ" type="RELATION"
 attrname="AT_APX_PROCESSINGTIME" calculated="TRUE"
 location="TARGET" distribution="TRUE"
 standarddeviation="TRUE" sharedfunctionki="FALSE"
 functionspanki="FALSE" retrievertype="KEYINDICATOR"
 dimreferring="LOOSE" importmode="OPTIONAL">
 <description language="de" name="Average working time" />
</kidef>
...

Associated calculation rule:

...
<calcattr name="AT_APX_PROCESSINGTIME"
 type="OT_FUNC" delete="no">
 <calculation>
 <max>
 <set>
 <constant>
 <dataitem value="0.0">
 0.000
 <datatype name="DOUBLE">Floating point number
 </datatype>
 </dataitem>
 </constant>
 <max>
 <attribute name="AT_APX_PROCESSINGTIME"
 nodetype="OT_FUNC" onerror="CONTINUE" />
 </max>
 </set>
 </max>
 </calculation>
</calcattr>
...

PPM CUSTOMIZING

237

8.6.4 Definition of relation and organizational dimensions

All dimension types (except search dimensions) can be defined as relation or organizational

dimensions using the dimtype XML attribute (see chapter on Definition of dimensions (page

178)). These dimension types are only available for evaluations in the Interaction analysis

module. These dimensions are indicated by yellow symbols in the user interface. For relation

dimensions, the location attribute also specifies which object of the relation is searched for

the corresponding dimension values (attributes). By default, this is the relation itself.

Relation and organizational dimensions are configured using the following XML elements and

XML attributes in the measure configuration:

XML tag Description

name Unique key word for dimension. Referenced in the

refdim XML element in the relation definition (see

Definition of relations (page 228) chapter).

Recommended prefix: REL_

dimtype RELATION (Relation dimension)

OT_ORG (Organizational dimension)

location

(optional)

Only for type="RELATION"

Valid values: SOURCE (the attribute from which the

dimension value is taken, search performed on the

source reference object of the relation.)

TARGET (the attribute from which the dimension

value is taken, search performed on the target

reference object of the relation.)

THIS (default value: The search for the attribute

from which the dimension value is taken is

performed on the relation itself)

Examples (extracts from measure configuration)

Time dimension as relation dimension:

...
<timedim name="REL_CO_TIME" dimtype="RELATION"
 attrname="AT_END_TIME" location="TARGET"
 tablename="FUNC_ENDTIME" precision="HOUR"
 dimgroup="DIM_GROUP_TIME" calculated="FALSE" internal="no"
 earlyalert="no" importmode="OPTIONAL">
 <description language="de" name="Time" />
</timedim>
...

PPM CUSTOMIZING

238

Two-level dimension as organizational dimension:

...
<twoleveldim name="FROMORG" dimtype="OT_ORG"
 dimgroup="DIM_GROUP_CRITERIA" internal="no"
 importmode="OPTIONAL">
 <description language="de"
 name="Organisationseinheit (Start)"/>
 <leveldesc>
 <dimitem attrname="AT_ORGGRP"
 colname="GRP" calculated="FALSE">
 <description language="de" name="Group" />
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_OBJNAME"
 colname="NAME" calculated="FALSE">
 <description language="de" name="Name" />
 </dimitem>
 </leveldesc>
</twoleveldim>
...

Warning

Search dimensions (searchdim XML element) cannot be defined as either relation dimensions

or organizational dimensions.

PPM CUSTOMIZING

239

9 Change aggregation behavior

By default, when permanently aggregating process instances using the PPM command line

aggregation (see runppmcompress) (see PPM Operation Guide), identical values of a

process dimension are transferred as a dimension value to the aggregated EPC, while

different values are deleted so that the dimension does not have a value in the aggregated

EPC. You can then no longer trace whether dimension values had been specified or not. This

only applies to dimensions that do not function as aggregation criteria, that is, dimensions

that are not included as iterations in the aggregation paramset.

You can change the behavior of the command line aggregation through specific configuration

settings in your PPM system so that both identical and different dimension values are deleted

during aggregation if this dimension is not used for iteration in the aggregation paramset. In

the aggregated process instance, the deleted values are then rendered visible by a uniform

aggregation value. You specify aggregation values in the measure configuration for the

relevant process dimension (text dimensions and search dimensions).

For time dimensions (timedim and hourdim), you can only specify that both identical and

different dimension values are to be deleted during aggregation. In the analysis, the

dimension can no longer be represented in the aggregated process instance due to the

deleted values.

Text dimension example (aggregation value for the Material process dimension)

All values of the Material process dimension in the selected 46 process instances were

deleted via command line during permanent aggregation and replaced by the aggregation

value specified in the measure configuration (Compressed (1st level ID)). It does not matter

whether the dimension values were identical or different.

9.1 Configure the internal aggregation attribute

Ensure that the internal aggregation attribute AT_INTERNAL_COMPRESSCRITERION is

specified in the attribute configuration of your PPM system (see Definition of attribute

types and attribute type groups (page 16)).

PPM CUSTOMIZING

240

ATTRIBUTENAMES.XML

...
 <attribute key="AT_INTERNAL_COMPRESSCRITERION"
 name="Compression criteria"/>
...

ATTRIBUTETYPES.XML

...
 <attributedefinition key="AT_INTERNAL_COMPRESSCRITERION"
 type="TEXT" group="AG_KPI_COMPRESS"/>
...

In the aggregated process instance in the AT_INTERNAL_COMPRESSCRITERION process

attribute, all aggregation criteria are listed, that is, all process dimensions included as

iterations in the aggregation paramset used as well as all data access dimensions (see

Definition of data access dimensions (page 212)). If set, the refinement level is specified

after the internal name of the dimension in parentheses.

The PROCESSTYPE process dimension is always included in the internal aggregation

attribute because it is part of each aggregation paramset. The TIME process dimension,

however, is only included if it is contained as an iteration in the paramset. If only a time filter

is contained in the aggregation paramset, the Time dimension (as other time dimensions of

the timedim or hourdim type) is not listed as an aggregation criterion.

9.2 Assign aggregation values

Aggregation values displayed in an aggregated EPC to make deleted dimension values visible

are specified in the measure configuration (see Definition of dimensions (page 178)).

YOU CAN ASSIGN AGGREGATION VALUES TO THE FOLLOWING PROCESS
DIMENSION TYPES:

 One-level, two-level, n-level dimensions

(oneleveldim (page 187), twoleveldim (page 190), nleveldim (page 183))

 Search dimensions

(searchdim (page 205))

 Time dimensions

(timedim (page 195), hourdim (page 203))

Example 1 (aggregation values for a two-level dimension)

You want to specify aggregation values only for the first level of the two-level Material

process dimension:

...

PPM CUSTOMIZING

241

<twoleveldim name="MATERIAL" dimtype="PROCESS"
 dimgroup="DIM_GROUP_CRITERIA">
 <description name="Material" language="en"/>
 <leveldesc>
 <dimitem attrname="AT_MATERIAL_KIND" colname="FIRST_ID"
 calculated="FALSE">
 <description language="en" name="Material type"/>
 <compressionvalue>
 Compressed (1st level ID)
</compressionvalue>
 </dimitem>
 <dimitem attrname="AT_MATERIALKIND_NAME"
 colname="FIRST_DESC" calculated="FALSE">
 <description language="en" name="Material type name"/>
 <compressionvalue>
 Compressed (1st level description)
</compressionvalue>
 </dimitem>
 </leveldesc>
 <leveldesc>
 <dimitem attrname="AT_MATERIAL"
 colname="SECOND_ID" calculated="FALSE">
<description language="en" name="Material"/>
 </dimitem>
 <dimitem attrname="AT_MATERIAL_NAME"
 colname="SECOND_DESC" calculated="FALSE">
 <description language="en" name="Material type name"/>
 </dimitem>
 </leveldesc>
</twoleveldim>
...

For each key and description of the first level of the dimension, an aggregation value is

specified with the compressionvalue XML element. For the permanent aggregation using

command line aggregation, all identical and different values of the specified process

dimensions are deleted. In the aggregated process instance, the specified aggregation values

are displayed as the value of the dimension if the dimension is not included in the aggregation

paramset. The default value for the aggregated second level is Not specified because no

aggregation values are specified for the level items (dimitem) of the second level.

Always specify the aggregation values of the relevant level in pairs (for key and description),

otherwise the import of the measure configuration will abort with an error message.

PPM CUSTOMIZING

242

Example 2 (Time dimension: Delete dimension values when aggregating)

You want to ensure that no values are displayed for the Process end time time dimension in

permanently aggregated process instances, regardless of whether the dimension values of

the process instances to be aggregated are identical or different.

...
<timedim name="PROZESSENDZEIT" dimtype="PROCESS" ...
 attrname="AT_END_TIME" ...
 calculated="TRUE" ...
 deleteoncompression="TRUE" ... >
 <description name="Process end time" language="en" />
</timedim>
...

If you specify deleteoncompression="TRUE" for the Process end time process dimension,

identical and different dimension values of the process instances to be aggregated are

deleted during permanent aggregation via command line if the Process end time dimension

is not included as an iteration in the aggregation paramset. Dimension values no longer exist

in the aggregated EPC.

Warning

If you add the Process end time dimension in the PPM analysis of the displayed aggregated

process instance, data can no longer be displayed due to the deleted dimension values.

You cannot specify aggregation values for the Process type (PROCESSTYPE) dimension

because this dimension is automatically included as an iteration in each aggregation

paramset. Similarly, you cannot specify for the Time (TIME) process dimension that

dimension values are to be deleted during aggregation.

You can conveniently specify aggregation values for the relevant process dimension in PPM

Customizing Toolkit in the Dimensions component of the Measures and dimensions module.

This is also where you can specify for time dimensions of the PROCESS type whether

dimension values are to be deleted during aggregation. A prerequisite is that the

AT_INTERNAL_COMPRESSCRITERION attribute has been specified, that is, created.

PPM CUSTOMIZING

243

10 System connections

10.1 SAP executables

If configured accordingly, you can use the pop-up menu to start an executable from a

process instance selected in the process instance table via a login dialog in the SAP interface

that displays data pertaining to the selected process instance.

10.1.1 Software requirements

The SAP logon must be installed on the same computer as the PPM front-end.

 The SAP Java Connector (JCo) must be installed on the client computer and the SAP

server with the same version number.

 Notes on installation of the SAP Java Connector are available in the PPM Installation

Guide.

10.1.2 Privileges in the SAP system

The PPM user calling the executable requires an SAP user ID with at least the following

privileges:

 Login privilege via SAP GUI

 RFC privilege

 Privilege to execute the ABAP4_CALL_TRANSACTION remote function call

 Privileges to call the SAP executables specified in the configuration

10.1.3 Transaction call

If parameters transferred during the transaction call are incorrect, the corresponding error

handling takes place in the SAP system itself (see SAP batch programming).

A transaction is called within an independent process. Therefore, several transactions can be

open simultaneously.

PPM CUSTOMIZING

244

10.1.4 Configuration

The SAP transactions are configured in a separate XML file that can be imported or exported

using the runppmconfig command line program (see PPM Operation Guide). The

language-specific descriptions (description XML elements) must be specified at least in the

default language.

The XML configuration contains information on the pop-up menu, connection data for the

available SAP systems and the transaction configurations (optional entries in italics):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE r3transactionconf SYSTEM
 "mysaptransaction.dtd">
<r3transactionconf>
 <submenu>
 <description language="..." name="..."/>
 </submenu>
 <logoutMenuEntry>
 <description language="..." name="..."/>
 </logoutMenuEntry>
 <r3system systemid="..." client="...">
 <description language="..." name="...">
 Description of the SAP system
 </description>
 <locales>
 <defaultlocale value="..."/>
 <locale value="..."/>
 </locales>
 <applicationserver appserver="..."
 systemnumber="..."/>
 </r3system>
 <transaction systemid="..." transactionid="..."
 transactioncode="..." skipfirstscreen="..."
 proctypegroup="..." mode="..." update="...">
 <description language="..." name="..."/>
 <batchinputline ... />
 ...
 <batchinputlist ... />
 ...
 </transaction>
 <transaction ...>
 ...
 </transaction>
 ...
</r3transactionconf>

For more detailed information on configuring system access, refer to the PPM Process

Extractors Technical Reference.

For a transaction call to work, you need to configure not only connection data, but also at

least one transaction (transaction XML element).

PPM CUSTOMIZING

245

Use the SAP transaction recorder to create transaction configurations and record a

corresponding transaction in the ABAP batch input. Please refer to the SAP documentation

for more information on how the recorder works and on the ABAP batch input script syntax.

Warning

The following instructions on how to create configurations do not replace the SAP

documentation, especially not in terms of resolving script errors. Basic knowledge about

batch input scripts is a necessary requirement for creating transaction configurations.

In principle, two types of transaction calls can be configured:

 The call is only possible on one selected process instance (single select)

 The call is possible on one or multiple selected process instances (multi select)

10.1.4.1 Configuration examples

RECORDING A VA03 SINGLE SELECT TRANSACTION IN THE SAP FRONT-END

Requirements

For single selection of a process instance of the Order processing process type group in PPM,

the VA03 transaction (Display order) should be called in the SAP system using the sapppm

ID.

The transaction is to be assigned the AT_SALES_ORDER_NUMBER (order number of the

selected process instance) PPM process attribute.

Below you will see how to use the SAP transaction recorder to record the VA03 transaction

(Display order) taking into account the given requirements.

PPM CUSTOMIZING

246

Launch the transaction recorder in the SAP front-end (SHDB transaction). The following

screen is displayed:

Create a new record and enter any name in the Record box to be used for saving the record.

In the Transaction code box, enter the name of the transaction to be recorded:

Now start recording and enter the required data in the following screen, that is, in the boxes

to be filled with PPM process attributes, you enter the corresponding values and complete the

boxes that are to be filled with fixed values when the transaction is called. In this example,

PPM CUSTOMIZING

247

there are no fixed values to be preset, only the order number to be transferred from the PPM

process instance. Enter an order number that exists in your system in the Order box.

PPM CUSTOMIZING

248

Confirm your entries with the F5 key and display the data for order 7499:

PPM CUSTOMIZING

249

Exit the transaction using Back (F3). You have returned to the transaction recorder and see

your entries in the ABAP batch input format:

The first row of the batch input script refers to the transaction call. The last two rows

represent the order display and the use of the Back button. These rows can be ignored during

the subsequent creation of the XML transaction configuration.

The content of all other rows needs to be transferred into the XML format of the

batchinputline elements.

Column name in
ABAP batch input format

XML attribute

Program program

Dynpro dynpro

Start indicator dynprobegin

Field name fieldname

Field value fieldvalue

PPM CUSTOMIZING

250

Fields with no value do not need to be specified as this corresponds to the default value of

fieldvalue. The XML format in this example looks like this:

...
<batchinputline program="SAPMV45A" dynpro="0102"
 dynprobegin="X"/>
<batchinputline fieldname="BDC_CURSOR"
 fieldvalue="VBAK-VBELN"/>
<batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=UER1"/>
<batchinputline fieldname="VBAK-VBELN"
 fieldvalue="7499"/>
...

To ensure that the order 7499 is not always displayed, regardless of the process instance in

the Order processing process type group from which you call the VA03 transaction, replace

the static value for the order number field in the final batchinputline element (in this case:

VBAK-VBELN) with the corresponding PPM process attribute that contains the order number

in your process instance, for example, AT_SALES_ORDER_NUMBER.

Combined with (sample) connection data, the transaction configuration now looks as follows

(ABAP batch input data in bold):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE r3transactionconf SYSTEM
 "mysaptransaction.dtd">
<r3transactionconf>
 <submenu>
 <description language="de"
 name="SAP-Transaktionen"/>
 <description language="en"
 name="SAP transactions"/>
 </submenu>
 <logoutMenuEntry>
 <description language="de"
 name="SAP-Verbindung ändern"/>
 <description language="en"
 name="Change SAP connection"/>
 </logoutMenuEntry>
 <r3system systemid="sapppm" client="800">
 <description language="de"
 name="SAP-System 'sapppm' "/>
 <description language="en"
 name="SAP system 'sapppm' "/>
 <locales>
 <defaultlocale value="de"/>
 <locale value="en"/>
 </locales>
 <applicationserver appserver="sapppm"
 systemnumber="00"/>
 </r3system>
 <transaction systemid="sapppm"
 transactioncode="VA03" transactionid="VA03"
 proctypegroup="Order processing">

PPM CUSTOMIZING

251

 <description language="de"
 name="Auftrag anzeigen (VA03)"/>
 <description language="en"
 name="Display sales order (VA03)"/>
 <batchinputline program="SAPMV45A"
 dynpro="0102" dynprobegin="X"/>
 <batchinputline fieldname="BDC_CURSOR"
 fieldvalue="VBAK-VBELN"/>
 <batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=UER1"/>
 <batchinputline fieldname="VBAK-VBELN"
 attributname="AT_SALES_ORDER_NUMBER"/>
 </transaction>
</r3transactionconf>

DISPLAY IN PPM

The pop-up menu for calling a transaction on a selected process instance in the Order

processing\Other orders process type group in line with the above configuration looks like

this:

PPM CUSTOMIZING

252

The SAP login dialog in line with the configuration looks like this:

After the user has successfully been authenticated in the SAP system, the VA03 transaction

is called in the SAP front-end, and the data pertaining to the order number of the selected

process instance (here: 5000053) is displayed:

PPM CUSTOMIZING

253

RECORD ME5F MULTI-SELECT TRANSACTION

Requirements

If several process instances from the Purchase requisitions process type group are selected

in the process instance table, it should be possible to call the ME5F transaction (release

reminder: Purchase requisitions) in the SAP system using the sapppm ID. Use KY as the

release code and 01 as the release group for each call of the ME5F transaction.

The values of the PPM AT_BANF_NUMBER (purchase requisition number) process attribute

for the selected process instances should be transferred to the transaction.

Below you will see how to use the SAP transaction recorder to record the ME5F transaction

(purchase requisition release reminder) taking into account the given requirements.

Launch the transaction recorder in the SAP front-end (SHDB transaction). The following

screen is displayed:

PPM CUSTOMIZING

254

Create a new record and enter any name in the Record box to be used for saving the record.

In the Transaction code box, enter the name of the transaction to be recorded:

Now start recording and enter the required information in the following screen. For purchase

requisition numbers, enter the numbers 1001 - 1010 as individual values. In the dialog box,

use the Down key to navigate in order to avoid a non-functional OK code in the ABAP batch

script using vertical scrolling.

PPM CUSTOMIZING

255

In the Release code box, enter the value KY and in the Release group box, enter the value

01. Apply your entries by pressing the F8 key. Your transaction now looks as follows:

PPM CUSTOMIZING

256

Press F8 again to execute the transaction with the specified values and display the

corresponding purchase requirements in ABAP batch script format:

PPM CUSTOMIZING

257

Instead of applying the values directly from the SAP front-end, you can also export the script

as a DAT file using Shift+F8 and display the contents including line numbers in the editor.

The first row of the batch input script refers to the transaction call. Ignore this row and rows

41-48; they contain repeat entries from rows 5-11 or (as in row 46) automatically transferred

data from the bottom of the multiple selection dialog. Rows named BDC_SUBSCR (for

example, row 14) are to be ignored in the subsequent creation of the XML transaction

configuration.

The content of all other rows needs to be transferred into the XML format of the

batchinputline elements.

Column name in
ABAP batch input
format

DAT file
row number

XML attribute

Program 2, 12, 25, 38 program

Dynpro 2, 12, 25, 38 dynpro

PPM CUSTOMIZING

258

Column name in
ABAP batch input
format

DAT file
row number

XML attribute

Start indicator 2, 12, 25, 38 dynprobegin

Field name for example, 3-11

(1. screen)

fieldname

Field value for example, 3-11

(1. screen)

fieldvalue

You do not indicate fields without value because this corresponds to the fieldvalue default

value.

...
<!-- 1st screen -->
<batchinputline program="RM06BF00" dynpro="1000"
 dynprobegin="X"/>
<batchinputline fieldname="BDC_CURSOR"
 fieldvalue="S_FRGGR-LOW"/>
<batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=%005"/>
<batchinputline fieldname="P_FRGAB" fieldvalue="KY" />
<batchinputline fieldname="S_FRGGR-LOW" fieldvalue="01" />
<batchinputline fieldname="P_FRGVO" fieldvalue="X" />
<batchinputline fieldname="P_SELGS" fieldvalue="X" />
<batchinputline fieldname="P_SELPO" fieldvalue="X" />
<batchinputline fieldname="P_LSTUB" fieldvalue="A" />
<batchinputline fieldname="P_SRTKZ" fieldvalue="1" />

<!-- 2nd screen -->
<batchinputline program="SAPLALDB" dynpro="3000"
 dynprobegin="X"/>
<batchinputline fieldname="BDC_OKCODE" fieldvalue="=P+" />
<batchinputline fieldname="BDC_CURSOR"
 fieldvalue="RSCSEL-SLOW_I(08)"/>
<batchinputline fieldname="RSCSEL-SLOW_I(01)"
 fieldvalue="1001"/>
<batchinputline fieldname="RSCSEL-SLOW_I(02)"
 fieldvalue="1002"/>
<batchinputline fieldname="RSCSEL-SLOW_I(03)"
 fieldvalue="1003"/>
<batchinputline fieldname="RSCSEL-SLOW_I(04)"
 fieldvalue="1004"/>
<batchinputline fieldname="RSCSEL-SLOW_I(05)"
 fieldvalue="1005"/>
<batchinputline fieldname="RSCSEL-SLOW_I(06)"
 fieldvalue="1006"/>
<batchinputline fieldname="RSCSEL-SLOW_I(07)"
 fieldvalue="1007"/>
<batchinputline fieldname="RSCSEL-SLOW_I(08)"
 fieldvalue="1008"/>
<batchinputline fieldname="RSCSEL-SLOW_I(09)"

PPM CUSTOMIZING

259

 fieldvalue="__________"/>

<!-- 3rd screen -->
<batchinputline program="SAPLALDB" dynpro="3000"
 dynprobegin="X"/>
<batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=ACPT"/>
<batchinputline fieldname="BDC_CURSOR"
 fieldvalue="RSCSEL-SLOW_I(03)"/>
<batchinputline fieldname="RSCSEL-SLOW_I(01)"
 fieldvalue="1008"/>
<batchinputline fieldname="RSCSEL-SLOW_I(02)"
 fieldvalue="1009"/>
<batchinputline fieldname="RSCSEL-SLOW_I(03)"
 fieldvalue="1010"/>
<batchinputline fieldname="RSCSEL-SLOW_I(04)"
 fieldvalue=""/>
<batchinputline fieldname="RSCSEL-SLOW_I(05)"
 fieldvalue=""/>
<batchinputline fieldname="RSCSEL-SLOW_I(06)"
 fieldvalue=""/>
<batchinputline fieldname="RSCSEL-SLOW_I(07)"
 fieldvalue=""/>
<batchinputline fieldname="RSCSEL-SLOW_I(08)"
 fieldvalue=""/>
<batchinputline fieldname="RSCSEL-SLOW_I(09)"
 fieldvalue=""/>

<!-- 4th screen -->
<batchinputline program="RM06BF00" dynpro="1000"
 dynprobegin="X"/>
<batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=ONLI"/>
...

This transaction configuration would actually work with the connection data from the

previous example. However, no matter which process instances in the Purchase requisitions

process type group you would select, one transaction pertaining to a purchase requisition

with the number 1001-1010 would always be displayed.

In order to display the proper purchase requisition for each process instance, you need to

replace both multiple selection screens (all batchinputline XML elements from the second and

third screen) in the current configuration with one batchinputlist XML element only. You need

the following data:

XML attribute Value (description)

program SAPLALDB (program name)

dynpro 3000 (dynpro name)

okcodefieldname BDC_OKCODE (name of the dynpro field that

contains the OK code)

PPM CUSTOMIZING

260

XML attribute Value (description)

okcodepagedown =P+ (OK code value for paging down)

okcodeaccept =ACPT (OK code value to accept the entry in

multiple selection)

fieldname RSCSEL-SLOW_I (Name of the field that you

want to assign the PPM attribute values to.

The field must not contain row indices [(01),

(02), etc.].)

attributname AT_BANF_NUMBER (internal name of the

PPM process attribute whose values are

going to be transferred to the called

transaction)

linesperpage 9 (number of entry rows on each multiple

selection screen)

Based on these entries, the batchinputlist element now looks like this:

<batchinputlist program="SAPLALDB" dynpro="3000"
 okcodefieldname="BDC_OKCODE" okcodepagedown="=P+"
 okcodeaccept="=ACPT" fieldname="RSCSEL-SLOW_I"
 attributname="AT_BANF_NUMBER" linesperpage="9" />

In combination with the connection data from the single select example, the transaction

configuration now looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE r3transactionconf SYSTEM
 "mysaptransaction.dtd">
<r3transactionconf>
 <submenu>
 <description language="de"
 name="SAP-Transaktionen"/>
 <description language="en"
 name="SAP transactions"/>
 </submenu>
 <logoutMenuEntry>
 <description language="de"
 name="SAP-Verbindung ändern"/>
 <description language="en"
 name="Change SAP connection"/>
 </logoutMenuEntry>
 <r3system systemid="sapppm" client="800">
 <description language="de"
 name="SAP-System 'sapppm' "/>

PPM CUSTOMIZING

261

 <description language="en"
 name="SAP system 'sapppm' "/>
 <locales>
 <defaultlocale value="de"/>
 <locale value="en"/>
 </locales>
 <applicationserver appserver="sapppm"
 systemnumber="00"/>
 </r3system>
 <transaction
 systemid="sapppm" transactioncode="ME5F"
 transactionid="ME5F">
 <description language="de"
 name="Freigabeerinnerung BANF (ME5F)"/>
 <description language="en"
 name="Release (approval) reminder:
 Purchase Requisitions (ME5F)"/>
 <!-- 1st screen -->
 <batchinputline program="RM06BF00" dynpro="1000"
 dynprobegin="X"/>
 <batchinputline fieldname="BDC_CURSOR"
 fieldvalue="S_FRGGR-LOW"/>
 <batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=%005"/>
 <batchinputline fieldname="P_FRGAB" fieldvalue="KY" />
 <batchinputline fieldname="S_FRGGR-LOW"
 fieldvalue="01"/>
 <batchinputline fieldname="P_FRGVO" fieldvalue="X" />
 <batchinputline fieldname="P_SELGS" fieldvalue="X" />
 <batchinputline fieldname="P_SELPO" fieldvalue="X" />
 <batchinputline fieldname="P_LSTUB" fieldvalue="A" />
 <batchinputline fieldname="P_SRTKZ" fieldvalue="1" />
 <!-- Multiple selection screens -->
 <batchinputlist program="SAPLALDB" dynpro="3000"
 okcodefieldname="BDC_OKCODE" okcodepagedown="=P+"
 okcodeaccept="=ACPT" fieldname="RSCSEL-SLOW_I"
 attributname="AT_BANF_NUMBER" linesperpage="9" />
 <!-- 1st screen -->
 <batchinputline program="RM06BF00" dynpro="1000"
 dynprobegin="X"/>
 <batchinputline fieldname="BDC_OKCODE"
 fieldvalue="=ONLI"/>
 </transaction>
</r3transactionconf>

10.1.4.2 Explanations regarding the DTD

The file mysaptransaction.dtd determines the configuration options:

PPM CUSTOMIZING

262

POP-UP MENU CONFIGURATION

XML tag Description

submenu

(optional)

Name of the submenu. Default value: SAP

transactions. If only one submenu entry exists,

it is displayed directly in the pop-up menu

without submenu entry (e. g., initial login with

only one configured transaction)

logoutMenuEntry

(optional)

Menu entry for resetting all connection

parameters after at least one successful SAP

login. Default value: Reset connection

parameters

of all SAP systems

SYSTEM ACCESS CONFIGURATION

XML tag Description

r3system Description and connection data of the available

SAP system. Data of any number of SAP systems

can be specified. The configuration of system

access is described in detail in the PPM Process

Extractors technical reference.

description At least the description in the default language

must be specified.

name Name of the SAP system in the SAP logon dialog in

the PPM front-end

systemid Unique name of an SAP system. Is referenced by

the corresponding transaction.

client Name of the SAP client.

locales Languages available in the SAP system

defaultlocale Default language. Is preselected in the SAP login

dialog

locale

(optional)

Additional language(s) available in the SAP system

PPM CUSTOMIZING

263

XML tag Description

appserver

Computer name or IP address of the

SAP source system computer

systemnumber SAP system number

mshost Name of the SAP message host

r3name R/3 system name

group Name of application server group

appserver Name of application server

systemnumber SAP system number

gwhost Computer name of R/3 gateway

gwserv Service number of the R/3 gateway

TRANSACTION CONFIGURATION

XML tag Description

transaction Transaction configuration

systemid ID of the SAP system in which the transaction is

to be called. Must correspond to the value of a

systemid of the specified SAP systems

(r3system XML elements).

transactionid Transaction ID

transactioncode Transaction code of the transaction to be called

 (see SAP documentation)

skipfirstscreen

(optional)

Skips the transaction start page if all mandatory

fields are completed (see SAP documentation on

the CALL_TRANSACTION function module).

Valid values: yes | no

Default value: yes

PPM CUSTOMIZING

264

XML tag Description

mode

(optional)

Execution mode of the ABAP batch input (see

SAP documentation on the CALL_TRANSACTION

function module). Valid values:

SHOW_DYNPROS

(Dynpros are displayed during execution)

SHOW_DYNPROS_ONLY_ON_ERRORS

(Dynpros are displayed only if an error occurs or

when the end of the batch script is reached)

DONT_SHOW_DYNPROS

(Dynpros are not displayed)

Default value:

SHOW_DYNPROS_ONLY_ON_ERRORS

update

(optional)

Update type in the SAP system (see SAP

documentation on the CALL_TRANSACTION

function module). Valid values:

SYNCHRONOUS (synchronous update)

ASYNCHRONOUS (asynchronous update)

LOCAL (local update)

Default value: ASYNCHRONOUS

proctypegroup

(optional)

Process type group in which the transaction is

available. The transaction is automatically

available in all process types of the specified

process type group. If this entry is missing, the

transaction is available in the entire process tree.

description Language-specific interface name of the

transaction

name Pop-up menu entry of the transaction

batchinputline Line in ABAP batch input format. If a transaction

configuration contains only batchinputline

XML elements, the transaction can normally be

called for single selection only. Multiple selection

is possible only if the PPM process attribute

specified with attributname has the same value

in all selected process instances.

program Name of the program

PPM CUSTOMIZING

265

XML tag Description

dynpro Dynpro name

dynprobegin Start of a dynpro

fieldname Name of the dynpro field

attributname

(optional)

Internal name of a PPM process attribute whose

value is to be determined by the selected process

instance. The value is assigned to the dynpro

field, fieldvalue is ignored.

fieldvalue

(optional)

A constant value to be assigned to the dynpro

field. If attributname is specified fieldvalue is

ignored.

batchinputlist Multiple lines in ABAP batch input format. If a

transaction configuration contains at least one

batchinputlist XML element, the transaction can

be called with both single and multiple selection.

program Name of the program

dynpro Dynpro name

okcodefieldname

(optional)

Name of the dynpro field that contains the OK

code. Default value: BDC_OKCODE

okcodepagedown

(optional)

OK code value for paging down. Default value:

=P+

okcodeaccept

(optional)

OK code value to accept the entry. Default value:

=ACPT

fieldname Name of the dynpro field

attributname Internal name of a PPM process attribute whose

value is to be determined by the selected process

instance. The value is assigned to the dynpro

field, fieldvalue is ignored.

linesperpage

(optional)

Number of visible value lines on the dynpro. When

this number of lines is reached, the system pages

down. Default value: 9

PPM CUSTOMIZING

266

11 Legal information

11.1 Documentation scope

The information provided describes the settings and features as they were at the time of

publishing. Since documentation and software are subject to different production cycles, the

description of settings and features may differ from actual settings and features. Information

about discrepancies is provided in the Release Notes that accompany the product. Please

read the Release Notes and take the information into account when installing, setting up, and

using the product.

If you want to install technical and/or business system functions without using the

consulting services provided by Software GmbH, you require extensive knowledge of the

system to be installed, its intended purpose, the target systems, and their various

dependencies. Due to the number of platforms and interdependent hardware and software

configurations, we can describe only specific installations. It is not possible to document all

settings and dependencies.

When you combine various technologies, please observe the manufacturers' instructions,

particularly announcements concerning releases on their Internet pages. We cannot

guarantee proper functioning and installation of approved third-party systems and do not

support them. Always follow the instructions provided in the installation manuals of the

relevant manufacturers. If you experience difficulties, please contact the relevant

manufacturer.

If you need help installing third-party systems, contact your local Software GmbH sales

organization. Please note that this type of manufacturer-specific or customer-specific

customization is not covered by the standard Software GmbH software maintenance

agreement and can be performed only on special request and agreement.

11.2 Support

If you have any questions on specific installations that you cannot perform yourself, contact

your local Software GmbH sales organization

(https://www.softwareag.com/corporate/company/global/offices/default.html). To get

detailed information and support, use our Web sites.

If you have a valid support contract, you can contact Global Support ARIS at: +800

ARISHELP. If this number is not supported by your telephone provider, please refer to our

Global Support Contact Directory.

https://www.softwareag.com/corporate/company/global/offices/default.html

PPM CUSTOMIZING

267

For issues regarding the product documentation, you can also send an e-mail to

documentation@softwareag.com (mailto:documentation@softwareag.com).

ARIS COMMUNITY

 Download products, updates and fixes

 Find information, expert articles, issue resolution, videos, and communication with other

ARIS users

If you do not yet have an account, register at ARIS Community.

PRODUCT TRAINING

You can find helpful product training material on our Learning Portal.

TECH COMMUNITY

You can collaborate with Software GmbH experts on our Tech Community Web site. From here

you can, for example:

 Browse through our vast knowledge base.

 Ask questions and find answers in our discussion forums.

 Get the latest Software GmbH news and announcements.

 Explore our communities.

 Go to our public GitHub and Docker repositories and discover additional Software GmbH

resources.

PRODUCT SUPPORT

Support for Software GmbH products is provided to licensed customers via our Empower

Portal (https://empower.softwareag.com/). Many services on this portal require that you

have an account. If you do not yet have one, you can request it. Once you have an account,

you can, for example:

 Add product feature requests

 Search the Knowledge Center for technical information and tips

 Subscribe to early warnings and critical alerts

 Open and update support incidents.

mailto:documentation@softwareag.com
https://empower.softwareag.com/

	Contents
	1 General
	2 Overview
	2.1 Configuration components
	2.2 Command line programs
	2.3 Methodological procedure
	2.4 Configuration component hierarchy

	3 Interface languages
	3.1 User interface languages
	3.2 Interface language for display of configuration elements
	3.2.1 Using multi-byte character sets for configuration elements

	4 Internal names
	5 Attribute types and attribute type groups
	5.1 Data types
	5.1.1 Internal data types
	5.1.2 User-defined data types
	5.1.2.1 User-defined data types in multi-byte character sets

	5.2 Definition of attribute types and attribute type groups
	5.2.1 Definition of attribute types
	5.2.2 Definition of attribute type groups
	5.2.3 Configuration of attribute types and attribute type groups
	5.2.3.1 Attribute type and attribute type group definition in multi-byte character sets

	6 Process merge
	6.1 Process hierarchies
	6.2 Key rules
	6.2.1 Process key rules
	6.2.2 Hierarchy key rules
	6.2.3 Shared fragment key rules
	6.2.4 Merge key rules
	6.2.4.1 Key-based merge
	6.2.4.2 Merge based on sort order
	6.2.4.3 Combining merge methods

	6.2.5 Object key rules
	6.2.6 Output behavior of messages
	6.2.7 Configuration file

	6.3 Process fragment merge
	6.3.1 Merge mode "Replace"
	6.3.2 Merge mode "Update"

	6.4 Merge events
	6.4.1 Parallel paths with multi-valued keys
	6.4.2 Merge mode

	6.5 Attribute copy rules
	6.6 Anonymizing

	7 Process typification
	7.1 Create typification rules
	7.1.1 Measure configuration
	7.1.2 Process tree configuration
	7.1.2.1 Prioritization

	7.1.3 Definition of attribute calculations
	7.1.3.1 Calculation classes
	7.1.3.1.1 Log output for calculation classes
	7.1.3.1.2 Time measures
	7.1.3.1.3 Function measures
	7.1.3.1.4 Process measures
	7.1.3.1.5 Frequency measures
	7.1.3.1.6 Function measures
	7.1.3.1.7 Process measures
	7.1.3.1.8 Process cost rates
	7.1.3.1.9 More process measures
	7.1.3.1.10 Environmentally relevant calculations
	7.1.3.1.11 Relation measures
	7.1.3.1.12 Process conformance
	7.1.3.1.13 Conformance rate measure
	7.1.3.1.14 Conformance issue relation
	7.1.3.1.15 Convert time spans in milliseconds
	7.1.3.1.16 Mark as large EPC

	7.1.3.2 Operands
	7.1.3.2.1 Set of values (XML element attribute)
	7.1.3.2.2 Values (XML element filteredattribute)
	7.1.3.2.3 Constants (XML element constant)
	7.1.3.2.4 Determining attribute values
	7.1.3.2.5 Attribute values without object reference
	7.1.3.2.6 Attribute values with object reference

	7.1.3.3 Conditional attribute type access
	7.1.3.4 Operators
	7.1.3.4.1 Mathematic operators
	7.1.3.4.2 Operators resulting in a set of values
	7.1.3.4.3 Operators producing a value
	7.1.3.4.4 Logical operators
	7.1.3.4.5 Conditional operator
	7.1.3.4.6 String operators
	7.1.3.4.7 Time operators
	7.1.3.4.8 Conditional attribute type calculation

	7.1.3.5 Nesting of operators
	7.1.3.6 Calculation functions
	7.1.3.7 Change the attribute type
	7.1.3.8 Summary
	7.1.3.9 Example attribute calculations
	7.1.3.10 Special features of attribute calculation
	7.1.3.10.1 AT_INTERNAL_NO_CUBE_ENTRY function attribute

	7.1.4 Typification rules in CTK

	7.2 Typification by attribute calculation

	8 Definition of measures, dimensions, attribute calculations, and relations
	8.1 Terminology
	8.1.1 Measures
	8.1.1.1 Process instance-dependent measures
	8.1.1.2 Process instance-independent measures (PIKIs)

	8.1.2 Dimensions

	8.2 Definition of measures
	8.2.1 Definition of standard measures
	8.2.1.1 Formatting measure values
	8.2.1.2 Definition of process cost measures

	8.2.2 Measure definition in multi-byte character sets
	8.2.3 Definition of cardinality measures
	8.2.4 Definition of process instance-independent measures
	8.2.4.1 Usage (type) of a data series
	8.2.4.2 Dimension reference
	8.2.4.3 Definition of process instance-independent measures in multi-byte character sets
	8.2.4.4 Configuration import
	8.2.4.5 Data series migration
	8.2.4.6 Additional information: User-defined measures based on process instance-independent measures

	8.2.5 Definition of measure groups
	8.2.5.1 Visible measure groups
	8.2.5.2 Group of invisible measures

	8.3 Definition of dimensions
	8.3.1 Definition of dimension groups
	8.3.2 Text dimensions
	8.3.2.1 General XML structure
	8.3.2.1.1 One-level dimension
	8.3.2.1.2 Two-level dimension
	8.3.2.1.3 N-level dimension

	8.3.2.2 Configuration
	8.3.2.2.1 One-level dimensions
	8.3.2.2.2 Two-level dimensions
	8.3.2.2.3 N-level dimensions

	8.3.2.3 Import dimension values

	8.3.3 Floating point dimensions
	8.3.4 Time dimensions
	8.3.4.1 Time dimensions for the Early alert system
	8.3.4.2 Special feature for calculation of critical time attributes

	8.3.5 Time range dimensions
	8.3.6 Time of day dimensions
	8.3.7 Search dimensions
	8.3.8 Variant dimension
	8.3.8.1 Attribute configuration
	8.3.8.2 Measure configuration - dimension type
	8.3.8.3 Process tree configuration
	8.3.8.4 Usage of variant attributes during import

	8.3.9 Shared function dimension
	8.3.10 Using organizational units as dimensions

	8.4 Definition of data access dimensions
	8.4.1 Using data access dimensions

	8.5 Process tree definition
	8.5.1 Registration of measures and dimensions at the PPM system
	8.5.1.1 Register measure
	8.5.1.1.1 Register relation measure
	8.5.1.1.2 Register measures and dimensions of process instance-independent data series
	8.5.1.1.3 Special case: Register referenced dimensions

	8.5.1.2 Register dimension
	8.5.1.2.1 Register reference dimension
	8.5.1.2.2 Register relation dimension

	8.5.2 Automatic process tree expansion
	8.5.3 Manual process tree expansion
	8.5.4 Definition of process tree in multi-byte character sets

	8.6 Relations
	8.6.1 Definition of relations
	8.6.1.1 Reference dimensions

	8.6.2 Definition of relation calculations
	8.6.3 Definition of relation measures
	8.6.4 Definition of relation and organizational dimensions

	9 Change aggregation behavior
	9.1 Configure the internal aggregation attribute
	9.2 Assign aggregation values

	10 System connections
	10.1 SAP executables
	10.1.1 Software requirements
	10.1.2 Privileges in the SAP system
	10.1.3 Transaction call
	10.1.4 Configuration
	10.1.4.1 Configuration examples
	10.1.4.2 Explanations regarding the DTD

	11 Legal information
	11.1 Documentation scope
	11.2 Support

